當前位置: 首頁>>代碼示例>>Python>>正文


Python ops.Tensor方法代碼示例

本文整理匯總了Python中tensorflow.python.framework.ops.Tensor方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.Tensor方法的具體用法?Python ops.Tensor怎麽用?Python ops.Tensor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.framework.ops的用法示例。


在下文中一共展示了ops.Tensor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def __init__(self, initialize_fn, sample_fn, next_inputs_fn,
                 sample_ids_shape=None, sample_ids_dtype=None):
        """Initializer.

        Args:
          initialize_fn: callable that returns `(finished, next_inputs)`
            for the first iteration.
          sample_fn: callable that takes `(time, outputs, state)`
            and emits tensor `sample_ids`.
          next_inputs_fn: callable that takes `(time, outputs, state, sample_ids)`
            and emits `(finished, next_inputs, next_state)`.
          sample_ids_shape: Either a list of integers, or a 1-D Tensor of type
            `int32`, the shape of each value in the `sample_ids` batch. Defaults to
            a scalar.
          sample_ids_dtype: The dtype of the `sample_ids` tensor. Defaults to int32.
        """
        self._initialize_fn = initialize_fn
        self._sample_fn = sample_fn
        self._next_inputs_fn = next_inputs_fn
        self._batch_size = None
        self._sample_ids_shape = tensor_shape.TensorShape(sample_ids_shape or [])
        self._sample_ids_dtype = sample_ids_dtype or dtypes.int32 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:24,代碼來源:tf_helpers.py

示例2: sample

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def sample(self, time, outputs, state, name=None):
        """Gets a sample for one step."""
        del time, state  # unused by sample_fn
        # Outputs are logits, we sample instead of argmax (greedy).
        if not isinstance(outputs, ops.Tensor):
            raise TypeError("Expected outputs to be a single Tensor, got: %s" %
                            type(outputs))
        if self._softmax_temperature is None:
            logits = outputs
        else:
            logits = outputs / self._softmax_temperature

        sample_id_sampler = categorical.Categorical(logits=logits)
        sample_ids = sample_id_sampler.sample(seed=self._seed)

        return sample_ids 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:18,代碼來源:tf_helpers.py

示例3: _underlying_variable_ref

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def _underlying_variable_ref(t):
  """Find the underlying variable ref.

  Traverses through Identity, ReadVariableOp, and Enter ops.
  Stops when op type has Variable or VarHandle in name.

  Args:
    t: a Tensor

  Returns:
    a Tensor that is a variable ref, or None on error.
  """
  while t.op.type in ["Identity", "ReadVariableOp", "Enter"]:
    t = t.op.inputs[0]

  op_type = t.op.type
  if "Variable" in op_type or "VarHandle" in op_type:
    return t
  else:
    return None 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:22,代碼來源:rev_block_lib.py

示例4: append_tensor_alias

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def append_tensor_alias(tensor, alias):
  """Append an alias to the list of aliases of the tensor.

  Args:
    tensor: A `Tensor`.
    alias: String, to add to the list of aliases of the tensor.

  Returns:
    The tensor with a new alias appended to its list of aliases.
  """
  # Remove ending '/' if present.
  if alias[-1] == '/':
    alias = alias[:-1]
  if hasattr(tensor, 'aliases'):
    tensor.aliases.append(alias)
  else:
    tensor.aliases = [alias]
  return tensor 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:20,代碼來源:utils.py

示例5: get_tensor_aliases

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def get_tensor_aliases(tensor):
  """Get a list with the aliases of the input tensor.

  If the tensor does not have any alias, it would default to its its op.name or
  its name.

  Args:
    tensor: A `Tensor`.

  Returns:
    A list of strings with the aliases of the tensor.
  """
  if hasattr(tensor, 'aliases'):
    aliases = tensor.aliases
  else:
    if tensor.name[-2:] == ':0':
      # Use op.name for tensor ending in :0
      aliases = [tensor.op.name]
    else:
      aliases = [tensor.name]
  return aliases 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:23,代碼來源:utils.py

示例6: _transpose_batch_time

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def _transpose_batch_time(x):
    """Transpose the batch and time dimensions of a Tensor.
    Retains as much of the static shape information as possible.
    Args:
        x: A tensor of rank 2 or higher.
    Returns:
        x transposed along the first two dimensions.
    Raises:
        ValueError: if `x` is rank 1 or lower.
    """
    x_static_shape = x.get_shape()
    if x_static_shape.ndims is not None and x_static_shape.ndims < 2:
        raise ValueError(
            "Expected input tensor %s to have rank at least 2, but saw shape: %s" %
            (x, x_static_shape))
    x_rank = array_ops.rank(x)
    x_t = array_ops.transpose(
        x, array_ops.concat(
            ([1, 0], math_ops.range(2, x_rank)), axis=0))
    x_t.set_shape(
        tensor_shape.TensorShape([
            x_static_shape[1].value, x_static_shape[0].value
        ]).concatenate(x_static_shape[2:]))
    return x_t 
開發者ID:hirofumi0810,項目名稱:tensorflow_end2end_speech_recognition,代碼行數:26,代碼來源:dynamic_decoder.py

示例7: tile_batch

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def tile_batch(t, multiplier, name=None):
    """Tile the batch dimension of a (possibly nested structure of) tensor(s) t.
    For each tensor t in a (possibly nested structure) of tensors,
    this function takes a tensor t shaped `[batch_size, s0, s1, ...]` composed of
    minibatch entries `t[0], ..., t[batch_size - 1]` and tiles it to have a shape
    `[batch_size * multiplier, s0, s1, ...]` composed of minibatch entries
    `t[0], t[0], ..., t[1], t[1], ...` where each minibatch entry is repeated
    `multiplier` times.
    Args:
      t: `Tensor` shaped `[batch_size, ...]`.
      multiplier: Python int.
      name: Name scope for any created operations.
    Returns:
      A (possibly nested structure of) `Tensor` shaped
      `[batch_size * multiplier, ...]`.
    Raises:
      ValueError: if tensor(s) `t` do not have a statically known rank or
      the rank is < 1.
    """
    flat_t = nest.flatten(t)
    with tf.name_scope(name, "tile_batch", flat_t + [multiplier]):
        return nest.map_structure(lambda t_: _tile_batch(t_, multiplier), t) 
開發者ID:hirofumi0810,項目名稱:tensorflow_end2end_speech_recognition,代碼行數:24,代碼來源:beam_search_decoder_from_tensorflow.py

示例8: _merge_batch_beams

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def _merge_batch_beams(self, t, s=None):
        """Merges the tensor from a batch of beams into a batch by beams.
        More exactly, t is a tensor of dimension [batch_size, beam_width, s]. We
        reshape this into [batch_size*beam_width, s]
        Args:
          t: Tensor of dimension [batch_size, beam_width, s]
          s: (Possibly known) depth shape.
        Returns:
          A reshaped version of t with dimension [batch_size * beam_width, s].
        """
        if isinstance(s, ops.Tensor):
            s = tensor_shape.as_shape(tensor_util.constant_value(s))
        else:
            s = tensor_shape.TensorShape(s)
        t_shape = tf.shape(t)
        static_batch_size = tensor_util.constant_value(self._batch_size)
        batch_size_beam_width = (
            None if static_batch_size is None
            else static_batch_size * self._beam_width)
        reshaped_t = tf.reshape(
            t, tf.concat(
                ([self._batch_size * self._beam_width], t_shape[2:]), 0))
        reshaped_t.set_shape(
            (tensor_shape.TensorShape([batch_size_beam_width]).concatenate(s)))
        return reshaped_t 
開發者ID:hirofumi0810,項目名稱:tensorflow_end2end_speech_recognition,代碼行數:27,代碼來源:beam_search_decoder_from_tensorflow.py

示例9: _maybe_merge_batch_beams

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def _maybe_merge_batch_beams(self, t, s):
        """Splits the tensor from a batch by beams into a batch of beams.
        More exactly, t is a tensor of dimension [batch_size*beam_width, s]. We
        reshape this into [batch_size, beam_width, s]
        Args:
          t: Tensor of dimension [batch_size*beam_width, s]
          s: Tensor, Python int, or TensorShape.
        Returns:
          A reshaped version of t with dimension [batch_size, beam_width, s].
        Raises:
          TypeError: If t is an instance of TensorArray.
          ValueError:  If the rank of t is not statically known.
        """
        _check_maybe(t)
        if t.shape.ndims >= 2:
            return self._merge_batch_beams(t, s)
        else:
            return t 
開發者ID:hirofumi0810,項目名稱:tensorflow_end2end_speech_recognition,代碼行數:20,代碼來源:beam_search_decoder_from_tensorflow.py

示例10: _ImageDimensions

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def _ImageDimensions(image):
    """Returns the dimensions of an image tensor.
    Args:
      image: A 3-D Tensor of shape `[height, width, channels]`.
    Returns:
      A list of `[height, width, channels]` corresponding to the dimensions of the
        input image.  Dimensions that are statically known are python integers,
        otherwise they are integer scalar tensors.
    """
    if image.get_shape().is_fully_defined():
        return image.get_shape().as_list()
    else:
        static_shape = image.get_shape().with_rank(3).as_list()
        dynamic_shape = array_ops.unstack(array_ops.shape(image), 3)
        return [s if s is not None else d
                for s, d in zip(static_shape, dynamic_shape)] 
開發者ID:dengdan,項目名稱:seglink,代碼行數:18,代碼來源:tf_image.py

示例11: _flatten_fetches

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def _flatten_fetches(fetches):
  """Flatten list, tuple of fetches, or a single fetch into a list of fetches.

  Args:
    fetches: The fetches to flatten: Can be a single Tensor, Op, or a
      potentially nested list, tuple or dict of such individual fetches.

  Returns:
    The fetches flattened to a list.
  """

  flattened = []
  if isinstance(fetches, (list, tuple)):
    for fetch in fetches:
      flattened.extend(_flatten_fetches(fetch))
  elif isinstance(fetches, dict):
    for key in fetches:
      flattened.extend(_flatten_fetches(fetches[key]))
  else:
    flattened.append(fetches)

  return flattened 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:stepper.py

示例12: is_placeholder

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def is_placeholder(self, graph_element_name):
    """Check whether a graph element is a Placeholder, by name.

    Args:
      graph_element_name: (str) Name of the tensor or op to be tested.

    Returns:
      (bool) Whether the graph element of the specified name is a Placeholder
        op or the output Tensor of a Placeholder op.

    Raises:
      ValueError: If graph_element_name is not in the transitive closure of the
        stepper instance.
    """

    node_name = self._get_node_name(graph_element_name)
    if node_name not in self.sorted_nodes():
      raise ValueError(
          "%s is not in the transitive closure of this NodeStepper "
          "instance" % graph_element_name)

    graph_element = self._sess.graph.as_graph_element(graph_element_name)
    if not isinstance(graph_element, ops.Operation):
      graph_element = graph_element.op
    return graph_element.type == "Placeholder" 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:27,代碼來源:stepper.py

示例13: _get_fetch_names

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def _get_fetch_names(fetches):
  """Get a flattened list of the names in run() call fetches.

  Args:
    fetches: Fetches of the `Session.run()` call. It maybe a Tensor, an
      Operation or a Variable. It may also be nested lists, tuples or
      dicts. See doc of `Session.run()` for more details.

  Returns:
    (list of str) A flattened list of fetch names from `fetches`.
  """

  lines = []
  if isinstance(fetches, (list, tuple)):
    for fetch in fetches:
      lines.extend(_get_fetch_names(fetch))
  elif isinstance(fetches, dict):
    for key in fetches:
      lines.extend(_get_fetch_names(fetches[key]))
  else:
    # This ought to be a Tensor, an Operation or a Variable, for which the name
    # attribute should be available. (Bottom-out condition of the recursion.)
    lines.append(_get_fetch_name(fetches))

  return lines 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:27,代碼來源:cli_shared.py

示例14: _asset_path_from_tensor

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def _asset_path_from_tensor(path_tensor):
  """Returns the filepath value stored in constant `path_tensor`.

  Args:
    path_tensor: Tensor of a file-path.

  Returns:
    The string value i.e. path of the tensor, if valid.

  Raises:
    TypeError if tensor does not match expected op type, dtype or value.
  """
  if not isinstance(path_tensor, ops.Tensor):
    raise TypeError("Asset path tensor must be a Tensor.")
  if path_tensor.op.type != "Const":
    raise TypeError("Asset path tensor must be of type constant.")
  if path_tensor.dtype != dtypes.string:
    raise TypeError("Asset path tensor must be of dtype string.")
  str_values = path_tensor.op.get_attr("value").string_val
  if len(str_values) != 1:
    raise TypeError("Asset path tensor must be a scalar.")
  return str_values[0] 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:builder_impl.py

示例15: zero_state

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def zero_state(self, batch_size, dtype):
    """Return zero-filled state tensor(s).

    Args:
      batch_size: int, float, or unit Tensor representing the batch size.
      dtype: the data type to use for the state.

    Returns:
      If `state_size` is an int or TensorShape, then the return value is a
      `N-D` tensor of shape `[batch_size x state_size]` filled with zeros.

      If `state_size` is a nested list or tuple, then the return value is
      a nested list or tuple (of the same structure) of `2-D` tensors with
      the shapes `[batch_size x s]` for each s in `state_size`.
    """
    with ops.name_scope(type(self).__name__ + "ZeroState", values=[batch_size]):
      state_size = self.state_size
      return _zero_state_tensors(state_size, batch_size, dtype) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:rnn_cell_impl.py


注:本文中的tensorflow.python.framework.ops.Tensor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。