本文整理匯總了Python中tensorflow.python.framework.ops.Tensor方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.Tensor方法的具體用法?Python ops.Tensor怎麽用?Python ops.Tensor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.framework.ops
的用法示例。
在下文中一共展示了ops.Tensor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def __init__(self, initialize_fn, sample_fn, next_inputs_fn,
sample_ids_shape=None, sample_ids_dtype=None):
"""Initializer.
Args:
initialize_fn: callable that returns `(finished, next_inputs)`
for the first iteration.
sample_fn: callable that takes `(time, outputs, state)`
and emits tensor `sample_ids`.
next_inputs_fn: callable that takes `(time, outputs, state, sample_ids)`
and emits `(finished, next_inputs, next_state)`.
sample_ids_shape: Either a list of integers, or a 1-D Tensor of type
`int32`, the shape of each value in the `sample_ids` batch. Defaults to
a scalar.
sample_ids_dtype: The dtype of the `sample_ids` tensor. Defaults to int32.
"""
self._initialize_fn = initialize_fn
self._sample_fn = sample_fn
self._next_inputs_fn = next_inputs_fn
self._batch_size = None
self._sample_ids_shape = tensor_shape.TensorShape(sample_ids_shape or [])
self._sample_ids_dtype = sample_ids_dtype or dtypes.int32
示例2: sample
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def sample(self, time, outputs, state, name=None):
"""Gets a sample for one step."""
del time, state # unused by sample_fn
# Outputs are logits, we sample instead of argmax (greedy).
if not isinstance(outputs, ops.Tensor):
raise TypeError("Expected outputs to be a single Tensor, got: %s" %
type(outputs))
if self._softmax_temperature is None:
logits = outputs
else:
logits = outputs / self._softmax_temperature
sample_id_sampler = categorical.Categorical(logits=logits)
sample_ids = sample_id_sampler.sample(seed=self._seed)
return sample_ids
示例3: _underlying_variable_ref
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def _underlying_variable_ref(t):
"""Find the underlying variable ref.
Traverses through Identity, ReadVariableOp, and Enter ops.
Stops when op type has Variable or VarHandle in name.
Args:
t: a Tensor
Returns:
a Tensor that is a variable ref, or None on error.
"""
while t.op.type in ["Identity", "ReadVariableOp", "Enter"]:
t = t.op.inputs[0]
op_type = t.op.type
if "Variable" in op_type or "VarHandle" in op_type:
return t
else:
return None
示例4: append_tensor_alias
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def append_tensor_alias(tensor, alias):
"""Append an alias to the list of aliases of the tensor.
Args:
tensor: A `Tensor`.
alias: String, to add to the list of aliases of the tensor.
Returns:
The tensor with a new alias appended to its list of aliases.
"""
# Remove ending '/' if present.
if alias[-1] == '/':
alias = alias[:-1]
if hasattr(tensor, 'aliases'):
tensor.aliases.append(alias)
else:
tensor.aliases = [alias]
return tensor
示例5: get_tensor_aliases
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def get_tensor_aliases(tensor):
"""Get a list with the aliases of the input tensor.
If the tensor does not have any alias, it would default to its its op.name or
its name.
Args:
tensor: A `Tensor`.
Returns:
A list of strings with the aliases of the tensor.
"""
if hasattr(tensor, 'aliases'):
aliases = tensor.aliases
else:
if tensor.name[-2:] == ':0':
# Use op.name for tensor ending in :0
aliases = [tensor.op.name]
else:
aliases = [tensor.name]
return aliases
示例6: _transpose_batch_time
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def _transpose_batch_time(x):
"""Transpose the batch and time dimensions of a Tensor.
Retains as much of the static shape information as possible.
Args:
x: A tensor of rank 2 or higher.
Returns:
x transposed along the first two dimensions.
Raises:
ValueError: if `x` is rank 1 or lower.
"""
x_static_shape = x.get_shape()
if x_static_shape.ndims is not None and x_static_shape.ndims < 2:
raise ValueError(
"Expected input tensor %s to have rank at least 2, but saw shape: %s" %
(x, x_static_shape))
x_rank = array_ops.rank(x)
x_t = array_ops.transpose(
x, array_ops.concat(
([1, 0], math_ops.range(2, x_rank)), axis=0))
x_t.set_shape(
tensor_shape.TensorShape([
x_static_shape[1].value, x_static_shape[0].value
]).concatenate(x_static_shape[2:]))
return x_t
示例7: tile_batch
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def tile_batch(t, multiplier, name=None):
"""Tile the batch dimension of a (possibly nested structure of) tensor(s) t.
For each tensor t in a (possibly nested structure) of tensors,
this function takes a tensor t shaped `[batch_size, s0, s1, ...]` composed of
minibatch entries `t[0], ..., t[batch_size - 1]` and tiles it to have a shape
`[batch_size * multiplier, s0, s1, ...]` composed of minibatch entries
`t[0], t[0], ..., t[1], t[1], ...` where each minibatch entry is repeated
`multiplier` times.
Args:
t: `Tensor` shaped `[batch_size, ...]`.
multiplier: Python int.
name: Name scope for any created operations.
Returns:
A (possibly nested structure of) `Tensor` shaped
`[batch_size * multiplier, ...]`.
Raises:
ValueError: if tensor(s) `t` do not have a statically known rank or
the rank is < 1.
"""
flat_t = nest.flatten(t)
with tf.name_scope(name, "tile_batch", flat_t + [multiplier]):
return nest.map_structure(lambda t_: _tile_batch(t_, multiplier), t)
開發者ID:hirofumi0810,項目名稱:tensorflow_end2end_speech_recognition,代碼行數:24,代碼來源:beam_search_decoder_from_tensorflow.py
示例8: _merge_batch_beams
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def _merge_batch_beams(self, t, s=None):
"""Merges the tensor from a batch of beams into a batch by beams.
More exactly, t is a tensor of dimension [batch_size, beam_width, s]. We
reshape this into [batch_size*beam_width, s]
Args:
t: Tensor of dimension [batch_size, beam_width, s]
s: (Possibly known) depth shape.
Returns:
A reshaped version of t with dimension [batch_size * beam_width, s].
"""
if isinstance(s, ops.Tensor):
s = tensor_shape.as_shape(tensor_util.constant_value(s))
else:
s = tensor_shape.TensorShape(s)
t_shape = tf.shape(t)
static_batch_size = tensor_util.constant_value(self._batch_size)
batch_size_beam_width = (
None if static_batch_size is None
else static_batch_size * self._beam_width)
reshaped_t = tf.reshape(
t, tf.concat(
([self._batch_size * self._beam_width], t_shape[2:]), 0))
reshaped_t.set_shape(
(tensor_shape.TensorShape([batch_size_beam_width]).concatenate(s)))
return reshaped_t
開發者ID:hirofumi0810,項目名稱:tensorflow_end2end_speech_recognition,代碼行數:27,代碼來源:beam_search_decoder_from_tensorflow.py
示例9: _maybe_merge_batch_beams
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def _maybe_merge_batch_beams(self, t, s):
"""Splits the tensor from a batch by beams into a batch of beams.
More exactly, t is a tensor of dimension [batch_size*beam_width, s]. We
reshape this into [batch_size, beam_width, s]
Args:
t: Tensor of dimension [batch_size*beam_width, s]
s: Tensor, Python int, or TensorShape.
Returns:
A reshaped version of t with dimension [batch_size, beam_width, s].
Raises:
TypeError: If t is an instance of TensorArray.
ValueError: If the rank of t is not statically known.
"""
_check_maybe(t)
if t.shape.ndims >= 2:
return self._merge_batch_beams(t, s)
else:
return t
開發者ID:hirofumi0810,項目名稱:tensorflow_end2end_speech_recognition,代碼行數:20,代碼來源:beam_search_decoder_from_tensorflow.py
示例10: _ImageDimensions
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def _ImageDimensions(image):
"""Returns the dimensions of an image tensor.
Args:
image: A 3-D Tensor of shape `[height, width, channels]`.
Returns:
A list of `[height, width, channels]` corresponding to the dimensions of the
input image. Dimensions that are statically known are python integers,
otherwise they are integer scalar tensors.
"""
if image.get_shape().is_fully_defined():
return image.get_shape().as_list()
else:
static_shape = image.get_shape().with_rank(3).as_list()
dynamic_shape = array_ops.unstack(array_ops.shape(image), 3)
return [s if s is not None else d
for s, d in zip(static_shape, dynamic_shape)]
示例11: _flatten_fetches
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def _flatten_fetches(fetches):
"""Flatten list, tuple of fetches, or a single fetch into a list of fetches.
Args:
fetches: The fetches to flatten: Can be a single Tensor, Op, or a
potentially nested list, tuple or dict of such individual fetches.
Returns:
The fetches flattened to a list.
"""
flattened = []
if isinstance(fetches, (list, tuple)):
for fetch in fetches:
flattened.extend(_flatten_fetches(fetch))
elif isinstance(fetches, dict):
for key in fetches:
flattened.extend(_flatten_fetches(fetches[key]))
else:
flattened.append(fetches)
return flattened
示例12: is_placeholder
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def is_placeholder(self, graph_element_name):
"""Check whether a graph element is a Placeholder, by name.
Args:
graph_element_name: (str) Name of the tensor or op to be tested.
Returns:
(bool) Whether the graph element of the specified name is a Placeholder
op or the output Tensor of a Placeholder op.
Raises:
ValueError: If graph_element_name is not in the transitive closure of the
stepper instance.
"""
node_name = self._get_node_name(graph_element_name)
if node_name not in self.sorted_nodes():
raise ValueError(
"%s is not in the transitive closure of this NodeStepper "
"instance" % graph_element_name)
graph_element = self._sess.graph.as_graph_element(graph_element_name)
if not isinstance(graph_element, ops.Operation):
graph_element = graph_element.op
return graph_element.type == "Placeholder"
示例13: _get_fetch_names
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def _get_fetch_names(fetches):
"""Get a flattened list of the names in run() call fetches.
Args:
fetches: Fetches of the `Session.run()` call. It maybe a Tensor, an
Operation or a Variable. It may also be nested lists, tuples or
dicts. See doc of `Session.run()` for more details.
Returns:
(list of str) A flattened list of fetch names from `fetches`.
"""
lines = []
if isinstance(fetches, (list, tuple)):
for fetch in fetches:
lines.extend(_get_fetch_names(fetch))
elif isinstance(fetches, dict):
for key in fetches:
lines.extend(_get_fetch_names(fetches[key]))
else:
# This ought to be a Tensor, an Operation or a Variable, for which the name
# attribute should be available. (Bottom-out condition of the recursion.)
lines.append(_get_fetch_name(fetches))
return lines
示例14: _asset_path_from_tensor
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def _asset_path_from_tensor(path_tensor):
"""Returns the filepath value stored in constant `path_tensor`.
Args:
path_tensor: Tensor of a file-path.
Returns:
The string value i.e. path of the tensor, if valid.
Raises:
TypeError if tensor does not match expected op type, dtype or value.
"""
if not isinstance(path_tensor, ops.Tensor):
raise TypeError("Asset path tensor must be a Tensor.")
if path_tensor.op.type != "Const":
raise TypeError("Asset path tensor must be of type constant.")
if path_tensor.dtype != dtypes.string:
raise TypeError("Asset path tensor must be of dtype string.")
str_values = path_tensor.op.get_attr("value").string_val
if len(str_values) != 1:
raise TypeError("Asset path tensor must be a scalar.")
return str_values[0]
示例15: zero_state
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import Tensor [as 別名]
def zero_state(self, batch_size, dtype):
"""Return zero-filled state tensor(s).
Args:
batch_size: int, float, or unit Tensor representing the batch size.
dtype: the data type to use for the state.
Returns:
If `state_size` is an int or TensorShape, then the return value is a
`N-D` tensor of shape `[batch_size x state_size]` filled with zeros.
If `state_size` is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of `2-D` tensors with
the shapes `[batch_size x s]` for each s in `state_size`.
"""
with ops.name_scope(type(self).__name__ + "ZeroState", values=[batch_size]):
state_size = self.state_size
return _zero_state_tensors(state_size, batch_size, dtype)