當前位置: 首頁>>代碼示例>>Python>>正文


Python ops.IndexedSlices方法代碼示例

本文整理匯總了Python中tensorflow.python.framework.ops.IndexedSlices方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.IndexedSlices方法的具體用法?Python ops.IndexedSlices怎麽用?Python ops.IndexedSlices使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.framework.ops的用法示例。


在下文中一共展示了ops.IndexedSlices方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: clip_gradient_norms

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def clip_gradient_norms(gradients_to_variables, max_norm):
  """Clips the gradients by the given value.

  Args:
    gradients_to_variables: A list of gradient to variable pairs (tuples).
    max_norm: the maximum norm value.

  Returns:
    A list of clipped gradient to variable pairs.
  """
  clipped_grads_and_vars = []
  for grad, var in gradients_to_variables:
    if grad is not None:
      if isinstance(grad, ops.IndexedSlices):
        tmp = clip_ops.clip_by_norm(grad.values, max_norm)
        grad = ops.IndexedSlices(tmp, grad.indices, grad.dense_shape)
      else:
        grad = clip_ops.clip_by_norm(grad, max_norm)
    clipped_grads_and_vars.append((grad, var))
  return clipped_grads_and_vars 
開發者ID:yuantailing,項目名稱:ctw-baseline,代碼行數:22,代碼來源:learning.py

示例2: add_gradients_summaries

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def add_gradients_summaries(grads_and_vars):
  """Add summaries to gradients.

  Args:
    grads_and_vars: A list of gradient to variable pairs (tuples).

  Returns:
    The list of created summaries.
  """
  summaries = []
  for grad, var in grads_and_vars:
    if grad is not None:
      if isinstance(grad, ops.IndexedSlices):
        grad_values = grad.values
      else:
        grad_values = grad
      summaries.append(
          summary.histogram(var.op.name + '/gradient', grad_values))
      summaries.append(
          summary.scalar(var.op.name + '/gradient_norm',
                         clip_ops.global_norm([grad_values])))
    else:
      logging.info('Var %s has no gradient', var.op.name)

  return summaries 
開發者ID:yuantailing,項目名稱:ctw-baseline,代碼行數:27,代碼來源:learning.py

示例3: apply_indexed_slices_grad

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def apply_indexed_slices_grad(self, grad, local_step=0, name=None):
    """Attempts to apply a gradient to the accumulator.

    The attempt is silently dropped if the gradient is stale, i.e., local_step
    is less than the accumulator's global time step.

    Args:
      grad: The gradient IndexedSlices to be applied.
      local_step: Time step at which the gradient was computed.
      name: Optional name for the operation.

    Returns:
      The operation that (conditionally) applies a gradient to the accumulator.

    Raises:
      InvalidArgumentError: If grad is of the wrong shape
    """
    return self.apply_grad(
        grad_indices=grad.indices,
        grad_values=grad.values,
        grad_shape=grad.dense_shape,
        local_step=local_step,
        name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:data_flow_ops.py

示例4: _DynamicStitchGrads

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def _DynamicStitchGrads(op, grad):
  """Gradients for DynamicStitch."""

  num_values = len(op.inputs) // 2
  indices_grad = [None] * num_values

  def AsInt32(x):
    return (x if op.inputs[0].dtype == dtypes.int32 else
            math_ops.cast(x, dtypes.int32))
  inputs = [AsInt32(op.inputs[i]) for i in xrange(num_values)]
  if isinstance(grad, ops.IndexedSlices):
    output_shape = array_ops.shape(op.outputs[0])
    output_rows = output_shape[0]
    grad = math_ops.unsorted_segment_sum(grad.values, grad.indices, output_rows)
  values_grad = [array_ops.gather(grad, inp) for inp in inputs]
  return indices_grad + values_grad 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:data_flow_grad.py

示例5: scatter_sub

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def scatter_sub(self, sparse_delta, use_locking=False):
    """Subtracts `IndexedSlices` from this variable.

    This is essentially a shortcut for `scatter_sub(self, sparse_delta.indices,
    sparse_delta.values)`.

    Args:
      sparse_delta: `IndexedSlices` to be subtracted from this variable.
      use_locking: If `True`, use locking during the operation.

    Returns:
      A `Tensor` that will hold the new value of this variable after
      the scattered subtraction has completed.

    Raises:
      ValueError: if `sparse_delta` is not an `IndexedSlices`.
    """
    if not isinstance(sparse_delta, ops.IndexedSlices):
      raise ValueError("sparse_delta is not IndexedSlices: %s" % sparse_delta)
    return state_ops.scatter_sub(
        self._variable,
        sparse_delta.indices,
        sparse_delta.values,
        use_locking=use_locking) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:variables.py

示例6: _NextIteration

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def _NextIteration(data, name=None):
  data = ops.internal_convert_to_tensor_or_indexed_slices(data, as_ref=True)
  if isinstance(data, ops.Tensor):
    if data.dtype._is_ref_dtype:   # pylint: disable=protected-access
      return ref_next_iteration(data, name=name)
    else:
      return next_iteration(data, name=name)
  else:
    if not isinstance(data, (ops.IndexedSlices, sparse_tensor.SparseTensor)):
      raise TypeError("Type %s not supported" % type(data))
    values = _NextIteration(data.values, name=name)
    indices = next_iteration(data.indices, name="indices")
    if isinstance(data, ops.IndexedSlices):
      dense_shape = data.dense_shape
      if dense_shape is not None:
        dense_shape = next_iteration(dense_shape, name="dense_shape")
      return ops.IndexedSlices(values, indices, dense_shape)
    else:
      dense_shape = next_iteration(data.dense_shape, name="dense_shape")
      return sparse_tensor.SparseTensor(indices, values, dense_shape) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:22,代碼來源:control_flow_ops.py

示例7: _BuildCondTensor

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def _BuildCondTensor(self, v):
    if isinstance(v, ops.Operation):
      # Use pivot as the proxy for this op.
      return with_dependencies([v], self._pivot)
    elif isinstance(v, (ops.IndexedSlices, sparse_tensor.SparseTensor)):
      values = self._ProcessOutputTensor(v.values)
      indices = self._ProcessOutputTensor(v.indices)
      if isinstance(v, ops.IndexedSlices):
        dense_shape = v.dense_shape
        if dense_shape is not None:
          dense_shape = self._ProcessOutputTensor(dense_shape)
        return ops.IndexedSlices(values, indices, dense_shape)
      else:
        dense_shape = self._ProcessOutputTensor(v.dense_shape)
        return sparse_tensor.SparseTensor(indices, values, dense_shape)
    else:
      v = nest.map_structure(_convert_tensorarray_to_flow, v)
      return self._ProcessOutputTensor(ops.convert_to_tensor(v)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:control_flow_ops.py

示例8: _InitializeValues

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def _InitializeValues(self, values):
    """Makes the values known to this context."""
    self._values = set()
    for x in values:
      if isinstance(x, ops.Tensor):
        self._values.add(x.name)
      else:
        self._values.add(x.values.name)
        self._values.add(x.indices.name)
        if isinstance(x, ops.IndexedSlices):
          dense_shape = x.dense_shape
        elif isinstance(x, sparse_tensor.SparseTensor):
          dense_shape = x.dense_shape
        else:
          raise TypeError("Type %s not supported" % type(x))
        if dense_shape is not None:
          self._values.add(dense_shape.name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:control_flow_ops.py

示例9: _FixControlInputsAndContext

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def _FixControlInputsAndContext(self, enters):
    graph = ops.get_default_graph()
    # pylint: disable=protected-access
    for e in enters:
      if isinstance(e, ops.Tensor):
        xs = [e]
      else:
        if not isinstance(e, (ops.IndexedSlices, sparse_tensor.SparseTensor)):
          raise TypeError("Type %s not supported" % type(e))
        xs = [e.values, e.indices]
        shape = e.dense_shape
        if shape is not None:
          xs.append(shape)
      for x in xs:
        inp_op = x.op.inputs[0]
        control_inputs = graph._control_dependencies_for_inputs([inp_op])
        outer_control_inputs = [op for op in control_inputs
                                if self._IsInOuterContext(op)]
        x.op._set_control_flow_context(self)
        x.op._add_control_inputs(outer_control_inputs)
        graph._record_op_seen_by_control_dependencies(x.op)
    # pylint: enable=protected-access 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:control_flow_ops.py

示例10: _GatherGrad

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def _GatherGrad(op, grad):
  """Gradient for gather op."""
  # Build appropriately shaped IndexedSlices
  # Walk graph back until the original handle is found.
  # TODO(apassos): more robust way of getting the shape.
  handle = op.inputs[0]
  while handle.op.type != "VarHandleOp":
    handle = handle.op.inputs[0]
  params_shape = ops.convert_to_tensor(
      tensor_shape.TensorShape(handle.op.get_attr("shape")))
  indices = op.inputs[1]
  size = array_ops.expand_dims(array_ops.size(indices), 0)
  values_shape = array_ops.concat([size, params_shape[1:]], 0)
  values = array_ops.reshape(grad, values_shape)
  indices = array_ops.reshape(indices, size)
  return [ops.IndexedSlices(values, indices, params_shape), None] 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:resource_variable_ops.py

示例11: _deduplicate_indexed_slices

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def _deduplicate_indexed_slices(values, indices):
  """Sums `values` associated with any non-unique `indices`.

  Args:
    values: A `Tensor` with rank >= 1.
    indices: A one-dimensional integer `Tensor`, indexing into the first
      dimension of `values` (as in an IndexedSlices object).
  Returns:
    A tuple of (`summed_values`, `unique_indices`) where `unique_indices` is a
    de-duplicated version of `indices` and `summed_values` contains the sum of
    `values` slices associated with each unique index.
  """
  unique_indices, new_index_positions = array_ops.unique(indices)
  summed_values = math_ops.unsorted_segment_sum(
      values, new_index_positions,
      array_ops.shape(unique_indices)[0])
  return (summed_values, unique_indices) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:optimizer.py

示例12: add_gradients_summaries

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def add_gradients_summaries(grads_and_vars):
  """Add summaries to gradients.

  Args:
    grads_and_vars: A list of gradient to variable pairs (tuples).

  Returns:
    The list of created summaries.
  """
  summaries = []
  for grad, var in grads_and_vars:
    if grad is not None:
      if isinstance(grad, ops.IndexedSlices):
        grad_values = grad.values
      else:
        grad_values = grad
      summaries.append(
          summary.histogram(var.op.name + '_gradient', grad_values))
      summaries.append(
          summary.scalar(var.op.name + '_gradient_norm',
                         clip_ops.global_norm([grad_values])))
    else:
      logging.info('Var %s has no gradient', var.op.name)

  return summaries 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:27,代碼來源:training.py

示例13: _multiply_gradients

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def _multiply_gradients(grads_and_vars, gradient_multipliers):
  """Multiply specified gradients."""
  multiplied_grads_and_vars = []
  for grad, var in grads_and_vars:
    if (grad is not None and
        (var in gradient_multipliers or var.name in gradient_multipliers)):
      key = var if var in gradient_multipliers else var.name
      multiplier = constant_op.constant(
          gradient_multipliers[key], dtype=dtypes.float32)
      if isinstance(grad, ops.IndexedSlices):
        grad_values = grad.values * multiplier
        grad = ops.IndexedSlices(grad_values, grad.indices, grad.dense_shape)
      else:
        grad *= multiplier
    multiplied_grads_and_vars.append((grad, var))
  return multiplied_grads_and_vars 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:optimizers.py

示例14: _clip_sparse

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def _clip_sparse(self, grad, var):
    assert isinstance(grad, ops.IndexedSlices)
    clip_dims = self._vars_to_clip_dims[var]
    if 0 in clip_dims:
      logging.warning("Clipping norm across dims %s for %s is inefficient "
                      "when including sparse dimension 0.", clip_dims,
                      var.op.name)
      return self._clip_dense(var)

    with ops.colocate_with(var):
      var_subset = array_ops.gather(var, grad.indices)
    with self._maybe_colocate_with(var):
      normalized_var_subset = clip_ops.clip_by_norm(
          var_subset, self._max_norm, clip_dims)
      delta = ops.IndexedSlices(
          var_subset - normalized_var_subset, grad.indices, grad.dense_shape)
    with ops.colocate_with(var):
      return var.scatter_sub(delta, use_locking=self._use_locking) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:variable_clipping_optimizer.py

示例15: _apply_sparse

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def _apply_sparse(self, grad, var):
    """Add ops to apply sparse gradients to `var`.

    The IndexedSlices object passed to `grad` in this function is by default
    pre-processed in `_apply_sparse_duplicate_indices` to remove duplicate
    indices (see its docstring for details). Optimizers which can tolerate or
    have correct special cases for duplicate sparse indices may override
    `_apply_sparse_duplicate_indices` instead of this function, avoiding that
    overhead.

    Args:
      grad: `IndexedSlices`, with no repeated indices.
      var: A `Variable` object.

    Return:
      An `Operation`.
    """
    raise NotImplementedError() 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:20,代碼來源:optimizer.py


注:本文中的tensorflow.python.framework.ops.IndexedSlices方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。