本文整理匯總了Python中tensorflow.python.framework.ops.IndexedSlices方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.IndexedSlices方法的具體用法?Python ops.IndexedSlices怎麽用?Python ops.IndexedSlices使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.framework.ops
的用法示例。
在下文中一共展示了ops.IndexedSlices方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: clip_gradient_norms
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def clip_gradient_norms(gradients_to_variables, max_norm):
"""Clips the gradients by the given value.
Args:
gradients_to_variables: A list of gradient to variable pairs (tuples).
max_norm: the maximum norm value.
Returns:
A list of clipped gradient to variable pairs.
"""
clipped_grads_and_vars = []
for grad, var in gradients_to_variables:
if grad is not None:
if isinstance(grad, ops.IndexedSlices):
tmp = clip_ops.clip_by_norm(grad.values, max_norm)
grad = ops.IndexedSlices(tmp, grad.indices, grad.dense_shape)
else:
grad = clip_ops.clip_by_norm(grad, max_norm)
clipped_grads_and_vars.append((grad, var))
return clipped_grads_and_vars
示例2: add_gradients_summaries
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def add_gradients_summaries(grads_and_vars):
"""Add summaries to gradients.
Args:
grads_and_vars: A list of gradient to variable pairs (tuples).
Returns:
The list of created summaries.
"""
summaries = []
for grad, var in grads_and_vars:
if grad is not None:
if isinstance(grad, ops.IndexedSlices):
grad_values = grad.values
else:
grad_values = grad
summaries.append(
summary.histogram(var.op.name + '/gradient', grad_values))
summaries.append(
summary.scalar(var.op.name + '/gradient_norm',
clip_ops.global_norm([grad_values])))
else:
logging.info('Var %s has no gradient', var.op.name)
return summaries
示例3: apply_indexed_slices_grad
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def apply_indexed_slices_grad(self, grad, local_step=0, name=None):
"""Attempts to apply a gradient to the accumulator.
The attempt is silently dropped if the gradient is stale, i.e., local_step
is less than the accumulator's global time step.
Args:
grad: The gradient IndexedSlices to be applied.
local_step: Time step at which the gradient was computed.
name: Optional name for the operation.
Returns:
The operation that (conditionally) applies a gradient to the accumulator.
Raises:
InvalidArgumentError: If grad is of the wrong shape
"""
return self.apply_grad(
grad_indices=grad.indices,
grad_values=grad.values,
grad_shape=grad.dense_shape,
local_step=local_step,
name=name)
示例4: _DynamicStitchGrads
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def _DynamicStitchGrads(op, grad):
"""Gradients for DynamicStitch."""
num_values = len(op.inputs) // 2
indices_grad = [None] * num_values
def AsInt32(x):
return (x if op.inputs[0].dtype == dtypes.int32 else
math_ops.cast(x, dtypes.int32))
inputs = [AsInt32(op.inputs[i]) for i in xrange(num_values)]
if isinstance(grad, ops.IndexedSlices):
output_shape = array_ops.shape(op.outputs[0])
output_rows = output_shape[0]
grad = math_ops.unsorted_segment_sum(grad.values, grad.indices, output_rows)
values_grad = [array_ops.gather(grad, inp) for inp in inputs]
return indices_grad + values_grad
示例5: scatter_sub
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def scatter_sub(self, sparse_delta, use_locking=False):
"""Subtracts `IndexedSlices` from this variable.
This is essentially a shortcut for `scatter_sub(self, sparse_delta.indices,
sparse_delta.values)`.
Args:
sparse_delta: `IndexedSlices` to be subtracted from this variable.
use_locking: If `True`, use locking during the operation.
Returns:
A `Tensor` that will hold the new value of this variable after
the scattered subtraction has completed.
Raises:
ValueError: if `sparse_delta` is not an `IndexedSlices`.
"""
if not isinstance(sparse_delta, ops.IndexedSlices):
raise ValueError("sparse_delta is not IndexedSlices: %s" % sparse_delta)
return state_ops.scatter_sub(
self._variable,
sparse_delta.indices,
sparse_delta.values,
use_locking=use_locking)
示例6: _NextIteration
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def _NextIteration(data, name=None):
data = ops.internal_convert_to_tensor_or_indexed_slices(data, as_ref=True)
if isinstance(data, ops.Tensor):
if data.dtype._is_ref_dtype: # pylint: disable=protected-access
return ref_next_iteration(data, name=name)
else:
return next_iteration(data, name=name)
else:
if not isinstance(data, (ops.IndexedSlices, sparse_tensor.SparseTensor)):
raise TypeError("Type %s not supported" % type(data))
values = _NextIteration(data.values, name=name)
indices = next_iteration(data.indices, name="indices")
if isinstance(data, ops.IndexedSlices):
dense_shape = data.dense_shape
if dense_shape is not None:
dense_shape = next_iteration(dense_shape, name="dense_shape")
return ops.IndexedSlices(values, indices, dense_shape)
else:
dense_shape = next_iteration(data.dense_shape, name="dense_shape")
return sparse_tensor.SparseTensor(indices, values, dense_shape)
示例7: _BuildCondTensor
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def _BuildCondTensor(self, v):
if isinstance(v, ops.Operation):
# Use pivot as the proxy for this op.
return with_dependencies([v], self._pivot)
elif isinstance(v, (ops.IndexedSlices, sparse_tensor.SparseTensor)):
values = self._ProcessOutputTensor(v.values)
indices = self._ProcessOutputTensor(v.indices)
if isinstance(v, ops.IndexedSlices):
dense_shape = v.dense_shape
if dense_shape is not None:
dense_shape = self._ProcessOutputTensor(dense_shape)
return ops.IndexedSlices(values, indices, dense_shape)
else:
dense_shape = self._ProcessOutputTensor(v.dense_shape)
return sparse_tensor.SparseTensor(indices, values, dense_shape)
else:
v = nest.map_structure(_convert_tensorarray_to_flow, v)
return self._ProcessOutputTensor(ops.convert_to_tensor(v))
示例8: _InitializeValues
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def _InitializeValues(self, values):
"""Makes the values known to this context."""
self._values = set()
for x in values:
if isinstance(x, ops.Tensor):
self._values.add(x.name)
else:
self._values.add(x.values.name)
self._values.add(x.indices.name)
if isinstance(x, ops.IndexedSlices):
dense_shape = x.dense_shape
elif isinstance(x, sparse_tensor.SparseTensor):
dense_shape = x.dense_shape
else:
raise TypeError("Type %s not supported" % type(x))
if dense_shape is not None:
self._values.add(dense_shape.name)
示例9: _FixControlInputsAndContext
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def _FixControlInputsAndContext(self, enters):
graph = ops.get_default_graph()
# pylint: disable=protected-access
for e in enters:
if isinstance(e, ops.Tensor):
xs = [e]
else:
if not isinstance(e, (ops.IndexedSlices, sparse_tensor.SparseTensor)):
raise TypeError("Type %s not supported" % type(e))
xs = [e.values, e.indices]
shape = e.dense_shape
if shape is not None:
xs.append(shape)
for x in xs:
inp_op = x.op.inputs[0]
control_inputs = graph._control_dependencies_for_inputs([inp_op])
outer_control_inputs = [op for op in control_inputs
if self._IsInOuterContext(op)]
x.op._set_control_flow_context(self)
x.op._add_control_inputs(outer_control_inputs)
graph._record_op_seen_by_control_dependencies(x.op)
# pylint: enable=protected-access
示例10: _GatherGrad
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def _GatherGrad(op, grad):
"""Gradient for gather op."""
# Build appropriately shaped IndexedSlices
# Walk graph back until the original handle is found.
# TODO(apassos): more robust way of getting the shape.
handle = op.inputs[0]
while handle.op.type != "VarHandleOp":
handle = handle.op.inputs[0]
params_shape = ops.convert_to_tensor(
tensor_shape.TensorShape(handle.op.get_attr("shape")))
indices = op.inputs[1]
size = array_ops.expand_dims(array_ops.size(indices), 0)
values_shape = array_ops.concat([size, params_shape[1:]], 0)
values = array_ops.reshape(grad, values_shape)
indices = array_ops.reshape(indices, size)
return [ops.IndexedSlices(values, indices, params_shape), None]
示例11: _deduplicate_indexed_slices
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def _deduplicate_indexed_slices(values, indices):
"""Sums `values` associated with any non-unique `indices`.
Args:
values: A `Tensor` with rank >= 1.
indices: A one-dimensional integer `Tensor`, indexing into the first
dimension of `values` (as in an IndexedSlices object).
Returns:
A tuple of (`summed_values`, `unique_indices`) where `unique_indices` is a
de-duplicated version of `indices` and `summed_values` contains the sum of
`values` slices associated with each unique index.
"""
unique_indices, new_index_positions = array_ops.unique(indices)
summed_values = math_ops.unsorted_segment_sum(
values, new_index_positions,
array_ops.shape(unique_indices)[0])
return (summed_values, unique_indices)
示例12: add_gradients_summaries
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def add_gradients_summaries(grads_and_vars):
"""Add summaries to gradients.
Args:
grads_and_vars: A list of gradient to variable pairs (tuples).
Returns:
The list of created summaries.
"""
summaries = []
for grad, var in grads_and_vars:
if grad is not None:
if isinstance(grad, ops.IndexedSlices):
grad_values = grad.values
else:
grad_values = grad
summaries.append(
summary.histogram(var.op.name + '_gradient', grad_values))
summaries.append(
summary.scalar(var.op.name + '_gradient_norm',
clip_ops.global_norm([grad_values])))
else:
logging.info('Var %s has no gradient', var.op.name)
return summaries
示例13: _multiply_gradients
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def _multiply_gradients(grads_and_vars, gradient_multipliers):
"""Multiply specified gradients."""
multiplied_grads_and_vars = []
for grad, var in grads_and_vars:
if (grad is not None and
(var in gradient_multipliers or var.name in gradient_multipliers)):
key = var if var in gradient_multipliers else var.name
multiplier = constant_op.constant(
gradient_multipliers[key], dtype=dtypes.float32)
if isinstance(grad, ops.IndexedSlices):
grad_values = grad.values * multiplier
grad = ops.IndexedSlices(grad_values, grad.indices, grad.dense_shape)
else:
grad *= multiplier
multiplied_grads_and_vars.append((grad, var))
return multiplied_grads_and_vars
示例14: _clip_sparse
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def _clip_sparse(self, grad, var):
assert isinstance(grad, ops.IndexedSlices)
clip_dims = self._vars_to_clip_dims[var]
if 0 in clip_dims:
logging.warning("Clipping norm across dims %s for %s is inefficient "
"when including sparse dimension 0.", clip_dims,
var.op.name)
return self._clip_dense(var)
with ops.colocate_with(var):
var_subset = array_ops.gather(var, grad.indices)
with self._maybe_colocate_with(var):
normalized_var_subset = clip_ops.clip_by_norm(
var_subset, self._max_norm, clip_dims)
delta = ops.IndexedSlices(
var_subset - normalized_var_subset, grad.indices, grad.dense_shape)
with ops.colocate_with(var):
return var.scatter_sub(delta, use_locking=self._use_locking)
示例15: _apply_sparse
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import IndexedSlices [as 別名]
def _apply_sparse(self, grad, var):
"""Add ops to apply sparse gradients to `var`.
The IndexedSlices object passed to `grad` in this function is by default
pre-processed in `_apply_sparse_duplicate_indices` to remove duplicate
indices (see its docstring for details). Optimizers which can tolerate or
have correct special cases for duplicate sparse indices may override
`_apply_sparse_duplicate_indices` instead of this function, avoiding that
overhead.
Args:
grad: `IndexedSlices`, with no repeated indices.
var: A `Variable` object.
Return:
An `Operation`.
"""
raise NotImplementedError()