當前位置: 首頁>>代碼示例>>Python>>正文


Python ops.EagerTensor方法代碼示例

本文整理匯總了Python中tensorflow.python.framework.ops.EagerTensor方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.EagerTensor方法的具體用法?Python ops.EagerTensor怎麽用?Python ops.EagerTensor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.framework.ops的用法示例。


在下文中一共展示了ops.EagerTensor方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_with_tensors

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import EagerTensor [as 別名]
def test_with_tensors(self):
        tf.reset_default_graph()
        tf.set_random_seed(1)

        things = tf.convert_to_tensor(np.array([[0, 0], [1, 0], [2, 0.5673]], dtype=np.float32))

        entity_relation = lambda x: x
        continuous_attribute = lambda x: x

        encoders_for_types = {lambda: entity_relation: [0, 1], lambda: continuous_attribute: [2]}

        tm = TypewiseEncoder(encoders_for_types, 1)
        encoded_things = tm(things)  # The function under test

        # Check that tensorflow was actually used
        self.assertEqual(EagerTensor, type(encoded_things)) 
開發者ID:graknlabs,項目名稱:kglib,代碼行數:18,代碼來源:typewise_IT.py

示例2: from_tensor

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import EagerTensor [as 別名]
def from_tensor(cls, tensor, name=None):
    if isinstance(tensor, ops.EagerTensor):
      return TensorSpec(tensor.shape, tensor.dtype, name)
    elif isinstance(tensor, ops.Tensor):
      return TensorSpec(tensor.shape, tensor.dtype, name or tensor.op.name)
    else:
      raise ValueError("`tensor` should be a tf.Tensor") 
開發者ID:microsoft,項目名稱:petridishnn,代碼行數:9,代碼來源:tensor_spec.py

示例3: args_to_matching_eager

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import EagerTensor [as 別名]
def args_to_matching_eager(l, ctx, default_dtype=None):
  """Convert sequence `l` to eager same-type Tensors."""
  EagerTensor = ops.EagerTensor  # pylint: disable=invalid-name
  if all(isinstance(x, EagerTensor) for x in l):
    return l[0].dtype, l
  # TODO(josh11b): Could we do a better job if we also passed in the
  # allowed dtypes when that was known?

  # Is some input already a Tensor with a dtype?
  dtype = None
  for t in l:
    if isinstance(t, EagerTensor):
      dtype = t.dtype
      break

  internal_convert_to_tensor = ops.internal_convert_to_tensor
  if dtype is None:
    # Infer a dtype based on the first value, and use that dtype for the
    # remaining values.
    ret = []
    for t in l:
      ret.append(internal_convert_to_tensor(
          t, dtype, preferred_dtype=default_dtype, ctx=ctx))
      if dtype is None:
        dtype = ret[-1].dtype
  else:
    ret = [internal_convert_to_tensor(t, dtype, ctx=ctx) for t in l]

  return dtype, ret 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:31,代碼來源:execute.py

示例4: convert_to_mixed_eager_tensors

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import EagerTensor [as 別名]
def convert_to_mixed_eager_tensors(values, ctx):
  v = [t if isinstance(t, ops.EagerTensor) else ops.EagerTensor(t, ctx)
       for t in values]
  types = [t.dtype for t in v]
  return types, v 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:7,代碼來源:execute.py

示例5: args_to_mixed_eager_tensors

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import EagerTensor [as 別名]
def args_to_mixed_eager_tensors(lists, ctx):
  """Converts a list of same-length lists of values to eager tensors."""
  assert len(lists) > 1

  # Generate an error if len(lists[i]) is not the same for all i.
  lists_ret = []
  for l in lists[1:]:
    if len(l) != len(lists[0]):
      raise ValueError(
          "Expected list arguments to be the same length: %d != %d (%r vs. %r)."
          % (len(lists[0]), len(l), lists[0], l))
    lists_ret.append([])

  # Convert the first element of each list first, then the second element, etc.
  types = []
  for i in range(len(lists[0])):
    dtype = None
    # If any list has a Tensor, use that dtype
    for l in lists:
      if isinstance(l[i], ops.EagerTensor):
        dtype = l[i].dtype
        break
    if dtype is None:
      # Convert the first one and use its dtype.
      lists_ret[0].append(ops.internal_convert_to_tensor(lists[0][i], ctx=ctx))
      dtype = lists_ret[0][i].dtype
      for j in range(1, len(lists)):
        lists_ret[j].append(
            ops.internal_convert_to_tensor(lists[j][i], dtype=dtype, ctx=ctx))
    else:
      # Convert everything to the found dtype.
      for j in range(len(lists)):
        lists_ret[j].append(
            ops.internal_convert_to_tensor(lists[j][i], dtype=dtype, ctx=ctx))
    types.append(dtype)
  return types, lists_ret 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:38,代碼來源:execute.py

示例6: named_defun

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import EagerTensor [as 別名]
def named_defun(func, name):
  """Defines a function with a given name.

  See the documentation for `defun` for more information on the semantics of the
  function.

  Args:
    func: the function to be wrapped.
    name: the name given to it.

  Returns:
    the wrapped function.
  """
  arguments_to_functions = {}

  def decorated(*args, **kwds):
    """Decorated version of func."""
    # Macroexpand on non-Tensor arguments
    cache_key = tuple(_cache_key(x) for x in args)
    assert all(not isinstance(x, ops.EagerTensor) for x in kwds.values())
    cache_key = (cache_key, tuple(kwds.items()))

    if cache_key not in arguments_to_functions:
      arguments_to_functions[cache_key] = _defun_internal(
          name, func, args, kwds)
    return arguments_to_functions[cache_key](*args)

  return decorated 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:30,代碼來源:function.py

示例7: _eval_helper

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import EagerTensor [as 別名]
def _eval_helper(self, tensors):
    if isinstance(tensors, ops.EagerTensor):
      return tensors.numpy()
    if isinstance(tensors, resource_variable_ops.ResourceVariable):
      return tensors.read_value().numpy()

    if isinstance(tensors, tuple):
      return tuple([self._eval_helper(t) for t in tensors])
    elif isinstance(tensors, list):
      return [self._eval_helper(t) for t in tensors]
    elif isinstance(tensors, dict):
      assert not tensors, "Only support empty dict now."
      return dict()
    else:
      raise ValueError("Unsupported type.") 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:17,代碼來源:test_util.py

示例8: constant_value

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import EagerTensor [as 別名]
def constant_value(tensor, partial=False):  # pylint: disable=invalid-name
  """Returns the constant value of the given tensor, if efficiently calculable.

  This function attempts to partially evaluate the given tensor, and
  returns its value as a numpy ndarray if this succeeds.

  TODO(mrry): Consider whether this function should use a registration
  mechanism like gradients and ShapeFunctions, so that it is easily
  extensible.

  NOTE: If `constant_value(tensor)` returns a non-`None` result, it will no
  longer be possible to feed a different value for `tensor`. This allows the
  result of this function to influence the graph that is constructed, and
  permits static shape optimizations.

  Args:
    tensor: The Tensor to be evaluated.
    partial: If True, the returned numpy array is allowed to have partially
      evaluated values. Values that can't be evaluated will be None.

  Returns:
    A numpy ndarray containing the constant value of the given `tensor`,
    or None if it cannot be calculated.

  Raises:
    TypeError: if tensor is not an ops.Tensor.
  """
  if isinstance(tensor, ops.EagerTensor):
    return tensor.numpy()
  ret = _ConstantValue(tensor, partial)
  if ret is not None:
    # The caller may now depend on the constant value of `tensor`, so we
    # conservatively prevent it from being fed.
    tensor.graph.prevent_feeding(tensor)
  return ret 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:37,代碼來源:tensor_util.py


注:本文中的tensorflow.python.framework.ops.EagerTensor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。