本文整理匯總了Python中tensorflow.python.framework.meta_graph.create_meta_graph_def方法的典型用法代碼示例。如果您正苦於以下問題:Python meta_graph.create_meta_graph_def方法的具體用法?Python meta_graph.create_meta_graph_def怎麽用?Python meta_graph.create_meta_graph_def使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.framework.meta_graph
的用法示例。
在下文中一共展示了meta_graph.create_meta_graph_def方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: before_run
# 需要導入模塊: from tensorflow.python.framework import meta_graph [as 別名]
# 或者: from tensorflow.python.framework.meta_graph import create_meta_graph_def [as 別名]
def before_run(self, run_context): # pylint: disable=unused-argument
if self._timer.last_triggered_step() is None:
# We do write graph and saver_def at the first call of before_run.
# We cannot do this in begin, since we let other hooks to change graph and
# add variables in begin. Graph is finalized after all begin calls.
training_util.write_graph(
ops.get_default_graph().as_graph_def(add_shapes=True),
self._checkpoint_dir,
"graph.pbtxt")
saver_def = self._get_saver().saver_def if self._get_saver() else None
graph = ops.get_default_graph()
meta_graph_def = meta_graph.create_meta_graph_def(
graph_def=graph.as_graph_def(add_shapes=True),
saver_def=saver_def)
self._summary_writer.add_graph(graph)
self._summary_writer.add_meta_graph(meta_graph_def)
return SessionRunArgs(self._global_step_tensor)
示例2: after_create_session
# 需要導入模塊: from tensorflow.python.framework import meta_graph [as 別名]
# 或者: from tensorflow.python.framework.meta_graph import create_meta_graph_def [as 別名]
def after_create_session(self, session, coord):
global_step = session.run(self._global_step_tensor)
# We do write graph and saver_def at the first call of before_run.
# We cannot do this in begin, since we let other hooks to change graph and
# add variables in begin. Graph is finalized after all begin calls.
def _write_graph_fn(self):
training_util.write_graph(
ops.get_default_graph().as_graph_def(add_shapes=True),
self._checkpoint_dir, "graph.pbtxt")
self._write_graph_thread = threading.Thread(target=_write_graph_fn,
args=[self])
self._write_graph_thread.start()
saver_def = self._get_saver().saver_def if self._get_saver() else None
graph = ops.get_default_graph()
meta_graph_def = meta_graph.create_meta_graph_def(
graph_def=graph.as_graph_def(add_shapes=True), saver_def=saver_def)
self._summary_writer.add_graph(graph)
self._summary_writer.add_meta_graph(meta_graph_def)
# The checkpoint saved here is the state at step "global_step".
self._save(session, global_step)
self._timer.update_last_triggered_step(global_step)
示例3: before_run
# 需要導入模塊: from tensorflow.python.framework import meta_graph [as 別名]
# 或者: from tensorflow.python.framework.meta_graph import create_meta_graph_def [as 別名]
def before_run(self, run_context): # pylint: disable=unused-argument
if self._timer.last_triggered_step() is None:
# Write graph in the first call.
training_util.write_graph(
ops.get_default_graph().as_graph_def(add_shapes=True),
self._checkpoint_dir,
"graph.pbtxt")
saver_def = self._saver.saver_def if self._saver else None
graph = ops.get_default_graph()
meta_graph_def = meta_graph.create_meta_graph_def(
graph_def=graph.as_graph_def(add_shapes=True),
saver_def=saver_def)
self._summary_writer.add_graph(graph)
self._summary_writer.add_meta_graph(meta_graph_def)
return SessionRunArgs(self._global_step_tensor)
示例4: test_train
# 需要導入模塊: from tensorflow.python.framework import meta_graph [as 別名]
# 或者: from tensorflow.python.framework.meta_graph import create_meta_graph_def [as 別名]
def test_train(self):
with tf.Graph().as_default() as g, self.test_session(g):
with tf.control_dependencies(self._build_inference_graph()):
train_op = tf.assign_add(tf.contrib.framework.get_global_step(), 1)
self._assert_summaries(self._output_dir)
self._assert_ckpt(self._output_dir, False)
loss = learn.graph_actions._monitored_train( # pylint: disable=protected-access
g,
output_dir=self._output_dir,
train_op=train_op,
loss_op=tf.constant(2.0),
steps=1)
meta_graph_def = meta_graph.create_meta_graph_def()
self.assertEqual(2.0, loss)
self._assert_summaries(self._output_dir, expected_graphs=[g],
expected_meta_graphs=[meta_graph_def])
self._assert_ckpt(self._output_dir, True)
示例5: test_train_loss
# 需要導入模塊: from tensorflow.python.framework import meta_graph [as 別名]
# 或者: from tensorflow.python.framework.meta_graph import create_meta_graph_def [as 別名]
def test_train_loss(self):
with tf.Graph().as_default() as g, self.test_session(g):
tf.contrib.framework.create_global_step()
loss_var = tf.contrib.framework.local_variable(10.0)
train_op = tf.group(
tf.assign_add(tf.contrib.framework.get_global_step(), 1),
tf.assign_add(loss_var, -1.0))
self._assert_summaries(self._output_dir)
self._assert_ckpt(self._output_dir, False)
loss = learn.graph_actions._monitored_train( # pylint: disable=protected-access
g,
output_dir=self._output_dir,
train_op=train_op,
loss_op=loss_var.value(),
steps=6)
meta_graph_def = meta_graph.create_meta_graph_def()
self.assertEqual(4.0, loss)
self._assert_summaries(self._output_dir, expected_graphs=[g],
expected_meta_graphs=[meta_graph_def])
self._assert_ckpt(self._output_dir, True)
示例6: test_train_summaries
# 需要導入模塊: from tensorflow.python.framework import meta_graph [as 別名]
# 或者: from tensorflow.python.framework.meta_graph import create_meta_graph_def [as 別名]
def test_train_summaries(self):
with tf.Graph().as_default() as g, self.test_session(g):
with tf.control_dependencies(self._build_inference_graph()):
train_op = tf.assign_add(tf.contrib.framework.get_global_step(), 1)
loss_op = tf.constant(2.0)
tf.summary.scalar('loss', loss_op)
self._assert_summaries(self._output_dir)
self._assert_ckpt(self._output_dir, False)
loss = learn.graph_actions._monitored_train( # pylint: disable=protected-access
g,
output_dir=self._output_dir,
train_op=train_op,
loss_op=loss_op,
steps=1)
meta_graph_def = meta_graph.create_meta_graph_def()
self.assertEqual(2.0, loss)
self._assert_summaries(self._output_dir,
expected_graphs=[g],
expected_meta_graphs=[meta_graph_def],
expected_summaries={1: {'loss': 2.0}})
self._assert_ckpt(self._output_dir, True)
示例7: test_summary_writer_defs
# 需要導入模塊: from tensorflow.python.framework import meta_graph [as 別名]
# 或者: from tensorflow.python.framework.meta_graph import create_meta_graph_def [as 別名]
def test_summary_writer_defs(self):
fake_summary_writer.FakeSummaryWriter.install()
tf.compat.v1.summary.FileWriterCache.clear()
summary_writer = tf.compat.v1.summary.FileWriterCache.get(self.model_dir)
with self.graph.as_default():
hook = basic_session_run_hooks.CheckpointSaverHook(
self.model_dir, save_steps=2, scaffold=self.scaffold)
hook.begin()
self.scaffold.finalize()
with tf.compat.v1.Session() as sess:
sess.run(self.scaffold.init_op)
mon_sess = monitored_session._HookedSession(sess, [hook])
hook.after_create_session(sess, None)
mon_sess.run(self.train_op)
summary_writer.assert_summaries(
test_case=self,
expected_logdir=self.model_dir,
expected_added_meta_graphs=[
meta_graph.create_meta_graph_def(
graph_def=self.graph.as_graph_def(add_shapes=True),
saver_def=self.scaffold.saver.saver_def)
])
fake_summary_writer.FakeSummaryWriter.uninstall()
示例8: before_run
# 需要導入模塊: from tensorflow.python.framework import meta_graph [as 別名]
# 或者: from tensorflow.python.framework.meta_graph import create_meta_graph_def [as 別名]
def before_run(self, run_context):
""" Dumps graphs and loads checkpoint if there exits.
Called before each call to run().
Args:
run_context: A `SessionRunContext` object.
Returns: A `SessionRunArgs` object containing global_step.
"""
# We do write graph and saver_def at the first call of before_run.
# We cannot do this in begin, since we let other hooks to change graph and
# add variables in begin. Graph is finalized after all begin calls.
if self._is_chief and self._first_call:
training_util.write_graph(
ops.get_default_graph().as_graph_def(add_shapes=True),
self._checkpoint_dir,
"graph.pbtxt")
# dump model details "model_analysis.txt"
dump_model_analysis(self._checkpoint_dir) # dump model configs
graph = ops.get_default_graph()
meta_graph_def = meta_graph.create_meta_graph_def(
graph_def=graph.as_graph_def(add_shapes=True),
saver_def=self._saver.saver_def)
if self._summary_writer is not None:
self._summary_writer.add_graph(graph)
self._summary_writer.add_meta_graph(meta_graph_def)
tf.logging.info("CheckpointSaverHook (before_run): dump graph...")
self._first_call = False
return tf.train.SessionRunArgs(self._global_step)
示例9: __init__
# 需要導入模塊: from tensorflow.python.framework import meta_graph [as 別名]
# 或者: from tensorflow.python.framework.meta_graph import create_meta_graph_def [as 別名]
def __init__(self, event_writer, graph=None, graph_def=None):
"""Creates a `SummaryWriter` and an event file.
On construction the summary writer creates a new event file in `logdir`.
This event file will contain `Event` protocol buffers constructed when you
call one of the following functions: `add_summary()`, `add_session_log()`,
`add_event()`, or `add_graph()`.
If you pass a `Graph` to the constructor it is added to
the event file. (This is equivalent to calling `add_graph()` later).
TensorBoard will pick the graph from the file and display it graphically so
you can interactively explore the graph you built. You will usually pass
the graph from the session in which you launched it:
```python
...create a graph...
# Launch the graph in a session.
sess = tf.Session()
# Create a summary writer, add the 'graph' to the event file.
writer = tf.summary.FileWriter(<some-directory>, sess.graph)
```
Args:
event_writer: An EventWriter. Implements add_event and get_logdir.
graph: A `Graph` object, such as `sess.graph`.
graph_def: DEPRECATED: Use the `graph` argument instead.
"""
self.event_writer = event_writer
# For storing used tags for session.run() outputs.
self._session_run_tags = {}
if graph is not None or graph_def is not None:
# Calling it with both graph and graph_def for backward compatibility.
self.add_graph(graph=graph, graph_def=graph_def)
# Also export the meta_graph_def in this case.
# graph may itself be a graph_def due to positional arguments
maybe_graph_as_def = (graph.as_graph_def(add_shapes=True)
if isinstance(graph, ops.Graph) else graph)
self.add_meta_graph(
meta_graph.create_meta_graph_def(graph_def=graph_def or
maybe_graph_as_def))
示例10: __init__
# 需要導入模塊: from tensorflow.python.framework import meta_graph [as 別名]
# 或者: from tensorflow.python.framework.meta_graph import create_meta_graph_def [as 別名]
def __init__(self, event_writer, graph=None, graph_def=None):
"""Creates a `SummaryWriter` and an event file.
On construction the summary writer creates a new event file in `logdir`.
This event file will contain `Event` protocol buffers constructed when you
call one of the following functions: `add_summary()`, `add_session_log()`,
`add_event()`, or `add_graph()`.
If you pass a `Graph` to the constructor it is added to
the event file. (This is equivalent to calling `add_graph()` later).
TensorBoard will pick the graph from the file and display it graphically so
you can interactively explore the graph you built. You will usually pass
the graph from the session in which you launched it:
```python
...create a graph...
# Launch the graph in a session.
sess = tf.Session()
# Create a summary writer, add the 'graph' to the event file.
writer = tf.summary.FileWriter(<some-directory>, sess.graph)
```
Args:
event_writer: An EventWriter. Implements add_event method.
graph: A `Graph` object, such as `sess.graph`.
graph_def: DEPRECATED: Use the `graph` argument instead.
"""
self.event_writer = event_writer
# For storing used tags for session.run() outputs.
self._session_run_tags = {}
if graph is not None or graph_def is not None:
# Calling it with both graph and graph_def for backward compatibility.
self.add_graph(graph=graph, graph_def=graph_def)
# Also export the meta_graph_def in this case.
# graph may itself be a graph_def due to positional arguments
maybe_graph_as_def = (
graph.as_graph_def(add_shapes=True) if isinstance(graph, ops.Graph)
else graph)
self.add_meta_graph(
meta_graph.create_meta_graph_def(
graph_def=graph_def or maybe_graph_as_def))
示例11: testChiefCanWriteEvents
# 需要導入模塊: from tensorflow.python.framework import meta_graph [as 別名]
# 或者: from tensorflow.python.framework.meta_graph import create_meta_graph_def [as 別名]
def testChiefCanWriteEvents(self):
logdir = _test_dir("can_write")
with tf.Graph().as_default():
tf.summary.scalar("c1", tf.constant(1))
tf.summary.scalar("c2", tf.constant(2))
tf.summary.scalar("c3", tf.constant(3))
summ = tf.summary.merge_all()
sv = tf.train.Supervisor(is_chief=True, logdir=logdir, summary_op=None)
meta_graph_def = meta_graph.create_meta_graph_def()
sess = sv.prepare_or_wait_for_session("")
sv.summary_computed(sess, sess.run(summ))
sess.close()
# Wait to make sure everything is written to file before stopping.
time.sleep(1)
sv.stop()
rr = _summary_iterator(logdir)
# The first event should list the file_version.
ev = next(rr)
self.assertEquals("brain.Event:2", ev.file_version)
# The next one has the graph.
ev = next(rr)
ev_graph = tf.GraphDef()
ev_graph.ParseFromString(ev.graph_def)
self.assertProtoEquals(sess.graph.as_graph_def(add_shapes=True), ev_graph)
# Stored MetaGraphDef
ev = next(rr)
ev_meta_graph = meta_graph_pb2.MetaGraphDef()
ev_meta_graph.ParseFromString(ev.meta_graph_def)
self.assertProtoEquals(meta_graph_def, ev_meta_graph)
self.assertProtoEquals(
sess.graph.as_graph_def(add_shapes=True), ev_meta_graph.graph_def)
# The next one should have the values from the summary.
ev = next(rr)
self.assertProtoEquals("""
value { tag: 'c1' simple_value: 1.0 }
value { tag: 'c2' simple_value: 2.0 }
value { tag: 'c3' simple_value: 3.0 }
""", ev.summary)
# The next one should be a stop message if we closed cleanly.
ev = next(rr)
self.assertEquals(tf.SessionLog.STOP, ev.session_log.status)
# We should be done.
self.assertRaises(StopIteration, lambda: next(rr))
示例12: testNoLogdirButExplicitSummaryWriter
# 需要導入模塊: from tensorflow.python.framework import meta_graph [as 別名]
# 或者: from tensorflow.python.framework.meta_graph import create_meta_graph_def [as 別名]
def testNoLogdirButExplicitSummaryWriter(self):
logdir = _test_dir("explicit_summary_writer")
with tf.Graph().as_default():
tf.summary.scalar("c1", tf.constant(1))
tf.summary.scalar("c2", tf.constant(2))
tf.summary.scalar("c3", tf.constant(3))
summ = tf.summary.merge_all()
sw = tf.train.SummaryWriter(logdir)
sv = tf.train.Supervisor(logdir="", summary_op=None, summary_writer=sw)
meta_graph_def = meta_graph.create_meta_graph_def()
sess = sv.prepare_or_wait_for_session("")
sv.summary_computed(sess, sess.run(summ))
sess.close()
# Wait to make sure everything is written to file before stopping.
time.sleep(1)
sv.stop()
# Check the summary was written to 'logdir'
rr = _summary_iterator(logdir)
# The first event should list the file_version.
ev = next(rr)
self.assertEquals("brain.Event:2", ev.file_version)
# The next one has the graph.
ev = next(rr)
ev_graph = tf.GraphDef()
ev_graph.ParseFromString(ev.graph_def)
self.assertProtoEquals(sess.graph.as_graph_def(add_shapes=True), ev_graph)
# Stored MetaGraphDef
ev = next(rr)
ev_meta_graph = meta_graph_pb2.MetaGraphDef()
ev_meta_graph.ParseFromString(ev.meta_graph_def)
self.assertProtoEquals(meta_graph_def, ev_meta_graph)
self.assertProtoEquals(
sess.graph.as_graph_def(add_shapes=True), ev_meta_graph.graph_def)
# The next one should have the values from the summary.
ev = next(rr)
self.assertProtoEquals("""
value { tag: 'c1' simple_value: 1.0 }
value { tag: 'c2' simple_value: 2.0 }
value { tag: 'c3' simple_value: 3.0 }
""", ev.summary)
# The next one should be a stop message if we closed cleanly.
ev = next(rr)
self.assertEquals(tf.SessionLog.STOP, ev.session_log.status)
# We should be done.
self.assertRaises(StopIteration, lambda: next(rr))
示例13: testStandardServicesWithoutGlobalStep
# 需要導入模塊: from tensorflow.python.framework import meta_graph [as 別名]
# 或者: from tensorflow.python.framework.meta_graph import create_meta_graph_def [as 別名]
def testStandardServicesWithoutGlobalStep(self):
logdir = _test_dir("standard_services_without_global_step")
# Create a checkpoint.
with tf.Graph().as_default():
v = tf.Variable([1.0], name="foo")
tf.summary.scalar("v", v[0])
sv = tf.train.Supervisor(logdir=logdir)
meta_graph_def = meta_graph.create_meta_graph_def(
saver_def=sv.saver.saver_def)
sess = sv.prepare_or_wait_for_session("")
save_path = sv.save_path
self._wait_for_glob(save_path, 3.0)
self._wait_for_glob(
os.path.join(logdir, "*events*"), 3.0, for_checkpoint=False)
# Wait to make sure everything is written to file before stopping.
time.sleep(1)
sv.stop()
# There should be an event file with a version number.
rr = _summary_iterator(logdir)
ev = next(rr)
self.assertEquals("brain.Event:2", ev.file_version)
ev = next(rr)
ev_graph = tf.GraphDef()
ev_graph.ParseFromString(ev.graph_def)
self.assertProtoEquals(sess.graph.as_graph_def(add_shapes=True), ev_graph)
# Stored MetaGraphDef
ev = next(rr)
ev_meta_graph = meta_graph_pb2.MetaGraphDef()
ev_meta_graph.ParseFromString(ev.meta_graph_def)
self.assertProtoEquals(meta_graph_def, ev_meta_graph)
self.assertProtoEquals(
sess.graph.as_graph_def(add_shapes=True), ev_meta_graph.graph_def)
ev = next(rr)
self.assertProtoEquals("value { tag: 'v' simple_value: 1.0 }", ev.summary)
ev = next(rr)
self.assertEquals(tf.SessionLog.STOP, ev.session_log.status)
self.assertRaises(StopIteration, lambda: next(rr))
# There should be a checkpoint file with the variable "foo"
with tf.Graph().as_default(), self.test_session() as sess:
v = tf.Variable([10.10], name="foo")
sav = tf.train.Saver([v])
sav.restore(sess, save_path)
self.assertEqual(1.0, v.eval()[0])
# Same as testStandardServicesNoGlobalStep but with a global step.
# We should get a summary about the step time.
示例14: testStandardServicesWithGlobalStep
# 需要導入模塊: from tensorflow.python.framework import meta_graph [as 別名]
# 或者: from tensorflow.python.framework.meta_graph import create_meta_graph_def [as 別名]
def testStandardServicesWithGlobalStep(self):
logdir = _test_dir("standard_services_with_global_step")
# Create a checkpoint.
with tf.Graph().as_default():
v = tf.Variable([123], name="global_step")
sv = tf.train.Supervisor(logdir=logdir)
meta_graph_def = meta_graph.create_meta_graph_def(
saver_def=sv.saver.saver_def)
sess = sv.prepare_or_wait_for_session("")
# This is where the checkpoint will appear, with step number 123.
save_path = "%s-123" % sv.save_path
self._wait_for_glob(save_path, 3.0)
self._wait_for_glob(
os.path.join(logdir, "*events*"), 3.0, for_checkpoint=False)
# Wait to make sure everything is written to file before stopping.
time.sleep(1)
sv.stop()
# There should be an event file with a version number.
rr = _summary_iterator(logdir)
ev = next(rr)
self.assertEquals("brain.Event:2", ev.file_version)
ev = next(rr)
ev_graph = tf.GraphDef()
ev_graph.ParseFromString(ev.graph_def)
self.assertProtoEquals(sess.graph.as_graph_def(add_shapes=True), ev_graph)
ev = next(rr)
ev_meta_graph = meta_graph_pb2.MetaGraphDef()
ev_meta_graph.ParseFromString(ev.meta_graph_def)
self.assertProtoEquals(meta_graph_def, ev_meta_graph)
self.assertProtoEquals(
sess.graph.as_graph_def(add_shapes=True), ev_meta_graph.graph_def)
ev = next(rr)
# It is actually undeterministic whether SessionLog.START gets written
# before the summary or the checkpoint, but this works when run 10000 times.
self.assertEquals(123, ev.step)
self.assertEquals(tf.SessionLog.START, ev.session_log.status)
first = next(rr)
second = next(rr)
# It is undeterministic whether the value gets written before the checkpoint
# since they are on separate threads, so we check for both conditions.
if first.HasField("summary"):
self.assertProtoEquals("""value { tag: 'global_step/sec'
simple_value: 0.0 }""",
first.summary)
self.assertEquals(123, second.step)
self.assertEquals(tf.SessionLog.CHECKPOINT, second.session_log.status)
else:
self.assertEquals(123, first.step)
self.assertEquals(tf.SessionLog.CHECKPOINT, first.session_log.status)
self.assertProtoEquals("""value { tag: 'global_step/sec'
simple_value: 0.0 }""",
second.summary)
ev = next(rr)
self.assertEquals(tf.SessionLog.STOP, ev.session_log.status)
self.assertRaises(StopIteration, lambda: next(rr))
# There should be a checkpoint file with the variable "foo"
with tf.Graph().as_default(), self.test_session() as sess:
v = tf.Variable([-12], name="global_step")
sav = tf.train.Saver([v])
sav.restore(sess, save_path)
self.assertEqual(123, v.eval()[0])
示例15: __init__
# 需要導入模塊: from tensorflow.python.framework import meta_graph [as 別名]
# 或者: from tensorflow.python.framework.meta_graph import create_meta_graph_def [as 別名]
def __init__(self, event_writer, graph=None, graph_def=None):
"""Creates a `SummaryWriter` and an event file.
On construction the summary writer creates a new event file in `logdir`.
This event file will contain `Event` protocol buffers constructed when you
call one of the following functions: `add_summary()`, `add_session_log()`,
`add_event()`, or `add_graph()`.
If you pass a `Graph` to the constructor it is added to
the event file. (This is equivalent to calling `add_graph()` later).
TensorBoard will pick the graph from the file and display it graphically so
you can interactively explore the graph you built. You will usually pass
the graph from the session in which you launched it:
```python
...create a graph...
# Launch the graph in a session.
sess = tf.Session()
# Create a summary writer, add the 'graph' to the event file.
writer = tf.train.SummaryWriter(<some-directory>, sess.graph)
```
Args:
event_writer: An EventWriter. Implements add_event method.
graph: A `Graph` object, such as `sess.graph`.
graph_def: DEPRECATED: Use the `graph` argument instead.
"""
self.event_writer = event_writer
# For storing used tags for session.run() outputs.
self._session_run_tags = {}
if graph is not None or graph_def is not None:
# Calling it with both graph and graph_def for backward compatibility.
self.add_graph(graph=graph, graph_def=graph_def)
# Also export the meta_graph_def in this case.
# graph may itself be a graph_def due to positional arguments
maybe_graph_as_def = (
graph.as_graph_def(add_shapes=True) if isinstance(graph, ops.Graph)
else graph)
self.add_meta_graph(
meta_graph.create_meta_graph_def(
graph_def=graph_def or maybe_graph_as_def))