當前位置: 首頁>>代碼示例>>Python>>正文


Python graph_util.convert_variables_to_constants方法代碼示例

本文整理匯總了Python中tensorflow.python.framework.graph_util.convert_variables_to_constants方法的典型用法代碼示例。如果您正苦於以下問題:Python graph_util.convert_variables_to_constants方法的具體用法?Python graph_util.convert_variables_to_constants怎麽用?Python graph_util.convert_variables_to_constants使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.framework.graph_util的用法示例。


在下文中一共展示了graph_util.convert_variables_to_constants方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: from tensorflow.python.framework import graph_util [as 別名]
# 或者: from tensorflow.python.framework.graph_util import convert_variables_to_constants [as 別名]
def main(_):

  # Create the model and load its weights.
  sess = tf.InteractiveSession()
  create_inference_graph(FLAGS.wanted_words, FLAGS.sample_rate,
                         FLAGS.clip_duration_ms, FLAGS.clip_stride_ms,
                         FLAGS.window_size_ms, FLAGS.window_stride_ms,
                         FLAGS.dct_coefficient_count, FLAGS.model_architecture)
  models.load_variables_from_checkpoint(sess, FLAGS.start_checkpoint)

  # Turn all the variables into inline constants inside the graph and save it.
  frozen_graph_def = graph_util.convert_variables_to_constants(
      sess, sess.graph_def, ['labels_softmax'])
  tf.train.write_graph(
      frozen_graph_def,
      os.path.dirname(FLAGS.output_file),
      os.path.basename(FLAGS.output_file),
      as_text=False)
  tf.logging.info('Saved frozen graph to %s', FLAGS.output_file) 
開發者ID:nesl,項目名稱:adversarial_audio,代碼行數:21,代碼來源:freeze.py

示例2: setUp

# 需要導入模塊: from tensorflow.python.framework import graph_util [as 別名]
# 或者: from tensorflow.python.framework.graph_util import convert_variables_to_constants [as 別名]
def setUp(self):
    self.base_path = os.path.join(test.get_temp_dir(), "no_vars")
    if not os.path.exists(self.base_path):
      os.mkdir(self.base_path)

    # Create a simple graph with a variable, then convert variables to
    # constants and export the graph.
    with ops.Graph().as_default() as g:
      x = array_ops.placeholder(dtypes.float32, name="x")
      w = variables.Variable(3.0)
      y = math_ops.subtract(w * x, 7.0, name="y")  # pylint: disable=unused-variable
      ops.add_to_collection("meta", "this is meta")

      with self.test_session(graph=g) as session:
        variables.global_variables_initializer().run()
        new_graph_def = graph_util.convert_variables_to_constants(
            session, g.as_graph_def(), ["y"])

      filename = os.path.join(self.base_path, constants.META_GRAPH_DEF_FILENAME)
      saver.export_meta_graph(
          filename, graph_def=new_graph_def, collection_list=["meta"]) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:23,代碼來源:session_bundle_test.py

示例3: freeze_session

# 需要導入模塊: from tensorflow.python.framework import graph_util [as 別名]
# 或者: from tensorflow.python.framework.graph_util import convert_variables_to_constants [as 別名]
def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True):

    graph = session.graph
    with graph.as_default():
        freeze_var_names = list(
            set(v.op.name for v in tf.global_variables()).difference(keep_var_names or []))
        output_names = output_names or []
        output_names += [v.op.name for v in tf.global_variables()]
        # Graph -> GraphDef ProtoBuf
        input_graph_def = graph.as_graph_def()
        if clear_devices:
            for node in input_graph_def.node:
                node.device = ""
        frozen_graph = convert_variables_to_constants(session, input_graph_def,
                                                      output_names, freeze_var_names)
        return frozen_graph 
開發者ID:shamangary,項目名稱:FSA-Net,代碼行數:18,代碼來源:keras_to_tf.py

示例4: setUp

# 需要導入模塊: from tensorflow.python.framework import graph_util [as 別名]
# 或者: from tensorflow.python.framework.graph_util import convert_variables_to_constants [as 別名]
def setUp(self):
    self.base_path = os.path.join(tf.test.get_temp_dir(), "no_vars")
    if not os.path.exists(self.base_path):
      os.mkdir(self.base_path)

    # Create a simple graph with a variable, then convert variables to
    # constants and export the graph.
    with tf.Graph().as_default() as g:
      x = tf.placeholder(tf.float32, name="x")
      w = tf.Variable(3.0)
      y = tf.sub(w * x, 7.0, name="y")  # pylint: disable=unused-variable
      tf.add_to_collection("meta", "this is meta")

      with self.test_session(graph=g) as session:
        tf.global_variables_initializer().run()
        new_graph_def = graph_util.convert_variables_to_constants(
            session, g.as_graph_def(), ["y"])

      filename = os.path.join(self.base_path, constants.META_GRAPH_DEF_FILENAME)
      tf.train.export_meta_graph(
          filename, graph_def=new_graph_def, collection_list=["meta"]) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:23,代碼來源:session_bundle_test.py

示例5: write_pb

# 需要導入模塊: from tensorflow.python.framework import graph_util [as 別名]
# 或者: from tensorflow.python.framework.graph_util import convert_variables_to_constants [as 別名]
def write_pb(checkpoint_path, pb_path, output_nodes):
    checkpoint_file = tf.train.latest_checkpoint(checkpoint_path)
    sess = tf.Session()

    saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
    saver.restore(sess, checkpoint_file)

    graph = tf.get_default_graph() # 獲得默認的圖
    input_graph_def = graph.as_graph_def()  # 返回一個序列化的圖代表當前的圖
    # convert_variables_to_constants 需要指定output_node_names,list(),可以多個
    constant_graph = graph_util.convert_variables_to_constants(sess,
                                                               input_graph_def,# 等於:sess.graph_def
                                                               output_nodes)
    # 寫入序列化的 PB 文件
    with tf.gfile.FastGFile(pb_path, mode='wb') as f:
        f.write(constant_graph.SerializeToString()) 
開發者ID:zhufz,項目名稱:nlp_research,代碼行數:18,代碼來源:tf_utils.py

示例6: export_cnn

# 需要導入模塊: from tensorflow.python.framework import graph_util [as 別名]
# 或者: from tensorflow.python.framework.graph_util import convert_variables_to_constants [as 別名]
def export_cnn() -> None:
    input = tf.placeholder(tf.float32, shape=(1, 1, 3, 3))
    filter = tf.constant(np.ones((3, 3, 1, 1)), dtype=tf.float32)
    x = tf.nn.conv2d(input, filter, (1, 1, 1, 1), "SAME", data_format="NCHW")
    x = tf.nn.sigmoid(x)
    x = tf.nn.relu(x)

    pred_node_names = ["output"]
    tf.identity(x, name=pred_node_names[0])

    with tf.Session() as sess:
        constant_graph = graph_util.convert_variables_to_constants(
            sess, sess.graph.as_graph_def(), pred_node_names
        )

    frozen = graph_util.remove_training_nodes(constant_graph)

    output = "cnn.pb"
    graph_io.write_graph(frozen, ".", output, as_text=False) 
開發者ID:tf-encrypted,項目名稱:tf-encrypted,代碼行數:21,代碼來源:convert.py

示例7: export

# 需要導入模塊: from tensorflow.python.framework import graph_util [as 別名]
# 或者: from tensorflow.python.framework.graph_util import convert_variables_to_constants [as 別名]
def export(x: tf.Tensor, filename: str, sess=None):
    should_close = False
    if sess is None:
        should_close = True
        sess = tf.Session()

    pred_node_names = ["output"]
    tf.identity(x, name=pred_node_names[0])
    graph = graph_util.convert_variables_to_constants(
        sess, sess.graph.as_graph_def(), pred_node_names
    )

    graph = graph_util.remove_training_nodes(graph)

    path = graph_io.write_graph(graph, ".", filename, as_text=False)

    if should_close:
        sess.close()

    return path 
開發者ID:tf-encrypted,項目名稱:tf-encrypted,代碼行數:22,代碼來源:convert_test.py

示例8: secure_model

# 需要導入模塊: from tensorflow.python.framework import graph_util [as 別名]
# 或者: from tensorflow.python.framework.graph_util import convert_variables_to_constants [as 別名]
def secure_model(model, **kwargs):
    """Secure a plaintext model from the current session."""
    session = K.get_session()
    min_graph = graph_util.convert_variables_to_constants(
        session, session.graph_def, [node.op.name for node in model.outputs]
    )
    graph_fname = "model.pb"
    tf.train.write_graph(min_graph, _TMPDIR, graph_fname, as_text=False)

    if "batch_size" in kwargs:
        batch_size = kwargs.pop("batch_size")
    else:
        batch_size = 1

    graph_def, inputs = load_graph(
        os.path.join(_TMPDIR, graph_fname), batch_size=batch_size
    )

    c = tfe.convert.convert.Converter(tfe.convert.registry(), **kwargs)
    y = c.convert(remove_training_nodes(graph_def), "input-provider", inputs)

    return PrivateModel(y) 
開發者ID:tf-encrypted,項目名稱:tf-encrypted,代碼行數:24,代碼來源:private_model.py

示例9: freeze_graph_def

# 需要導入模塊: from tensorflow.python.framework import graph_util [as 別名]
# 或者: from tensorflow.python.framework.graph_util import convert_variables_to_constants [as 別名]
def freeze_graph_def(sess, input_graph_def, output_node_names):
    for node in input_graph_def.node:
        if node.op == 'RefSwitch':
            node.op = 'Switch'
            for index in xrange(len(node.input)):
                if 'moving_' in node.input[index]:
                    node.input[index] = node.input[index] + '/read'
        elif node.op == 'AssignSub':
            node.op = 'Sub'
            if 'use_locking' in node.attr: del node.attr['use_locking']
        elif node.op == 'AssignAdd':
            node.op = 'Add'
            if 'use_locking' in node.attr: del node.attr['use_locking']
    
    # Get the list of important nodes
    whitelist_names = []
    for node in input_graph_def.node:
        if (node.name.startswith('MobileFaceNet') or node.name.startswith('embeddings')):
            whitelist_names.append(node.name)

    # Replace all the variables in the graph with constants of the same values
    output_graph_def = graph_util.convert_variables_to_constants(
        sess, input_graph_def, output_node_names.split(","),
        variable_names_whitelist=whitelist_names)
    return output_graph_def 
開發者ID:yangxue0827,項目名稱:MobileFaceNet_Tensorflow,代碼行數:27,代碼來源:freeze_graph.py

示例10: keras_to_tensorflow

# 需要導入模塊: from tensorflow.python.framework import graph_util [as 別名]
# 或者: from tensorflow.python.framework.graph_util import convert_variables_to_constants [as 別名]
def keras_to_tensorflow(keras_model, output_dir, model_name, out_prefix="output_", log_tensorboard=True):

    if os.path.exists(output_dir) == False:
        os.mkdir(output_dir)

    out_nodes = []

    for i in range(len(keras_model.outputs)):
        out_nodes.append(out_prefix + str(i + 1))
        tf.identity(keras_model.output[i], out_prefix + str(i + 1))

        sess = K.get_session()

        init_graph = sess.graph.as_graph_def()

        main_graph = graph_util.convert_variables_to_constants(sess, init_graph, out_nodes)

        graph_io.write_graph(main_graph, output_dir, name=model_name, as_text=False)

        if log_tensorboard:
            import_pb_to_tensorboard.import_to_tensorboard(os.path.join(output_dir, model_name), output_dir) 
開發者ID:mogoweb,項目名稱:aiexamples,代碼行數:23,代碼來源:image_classifier_tf.py

示例11: main

# 需要導入模塊: from tensorflow.python.framework import graph_util [as 別名]
# 或者: from tensorflow.python.framework.graph_util import convert_variables_to_constants [as 別名]
def main(_):

  # Create the model and load its weights.
  sess = tf.InteractiveSession()
  create_inference_graph(FLAGS.wanted_words, FLAGS.sample_rate,
                         FLAGS.clip_duration_ms, FLAGS.clip_stride_ms,
                         FLAGS.window_size_ms, FLAGS.window_stride_ms,
                         FLAGS.dct_coefficient_count, FLAGS.resnet_size,
                         FLAGS.model_architecture)
  models.load_variables_from_checkpoint(sess, FLAGS.start_checkpoint)

  # Turn all the variables into inline constants inside the graph and save it.
  frozen_graph_def = graph_util.convert_variables_to_constants(
      sess, sess.graph_def, ['labels_softmax'])
  tf.train.write_graph(
      frozen_graph_def,
      os.path.dirname(FLAGS.output_file),
      os.path.basename(FLAGS.output_file),
      as_text=False)
  tf.logging.info('Saved frozen graph to %s', FLAGS.output_file) 
開發者ID:lifeiteng,項目名稱:TF_SpeechRecoChallenge,代碼行數:22,代碼來源:freeze.py

示例12: frozen_graph_to_pb

# 需要導入模塊: from tensorflow.python.framework import graph_util [as 別名]
# 或者: from tensorflow.python.framework.graph_util import convert_variables_to_constants [as 別名]
def frozen_graph_to_pb(outputs, frozen_graph_pb_path, sess, graph=None):
  """Freeze graph to a pb file."""
  if not isinstance(outputs, (list)):
    raise ValueError("Frozen graph: outputs must be list of output node name")

  if graph is None:
    graph = tf.get_default_graph()

  input_graph_def = graph.as_graph_def()
  logging.info("Frozen graph: len of input graph nodes: {}".format(
      len(input_graph_def.node)))

  # We use a built-in TF helper to export variables to constant
  output_graph_def = graph_util.convert_variables_to_constants(
      sess,
      input_graph_def,
      outputs,
  )

  logging.info("Frozen graph: len of output graph nodes: {}".format(
      len(output_graph_def.node)))  # pylint: disable=no-member

  with tf.gfile.GFile(frozen_graph_pb_path, "wb") as in_f:
    in_f.write(output_graph_def.SerializeToString()) 
開發者ID:didi,項目名稱:delta,代碼行數:26,代碼來源:model.py

示例13: save_mode_pb

# 需要導入模塊: from tensorflow.python.framework import graph_util [as 別名]
# 或者: from tensorflow.python.framework.graph_util import convert_variables_to_constants [as 別名]
def save_mode_pb(pb_file_path):
    x = tf.placeholder(tf.int32, name='x')
    y = tf.placeholder(tf.int32, name='y')
    b = tf.Variable(2, name='b')
    xy = tf.multiply(x, y)
    # 這裏的輸出需要加上name屬性
    op = tf.add(xy, b, name='op_to_store')

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    path = os.path.dirname(os.path.abspath(pb_file_path))
    if os.path.isdir(path) is False:
        os.makedirs(path)

    # convert_variables_to_constants 需要指定output_node_names,list(),可以多個
    constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['op_to_store'])
    with tf.gfile.FastGFile(pb_file_path, mode='wb') as f:
        f.write(constant_graph.SerializeToString())

    # test
    feed_dict = {x: 2, y: 4}
    print(sess.run(op, feed_dict)) 
開發者ID:fajieyuan,項目名稱:nextitnet,代碼行數:25,代碼來源:savevariables.py

示例14: convertMetaModelToPbModel

# 需要導入模塊: from tensorflow.python.framework import graph_util [as 別名]
# 或者: from tensorflow.python.framework.graph_util import convert_variables_to_constants [as 別名]
def convertMetaModelToPbModel(meta_model, pb_model):
    # Step 1
    # import the model metagraph
    saver = tf.train.import_meta_graph(meta_model + '.meta', clear_devices=True)
    # make that as the default graph
    graph = tf.get_default_graph()
    sess = tf.Session()
    # now restore the variables
    saver.restore(sess, meta_model)
    # Step 2
    # Find the output name
    for op in graph.get_operations():
        print(op.name)
    # Step 3
    output_graph_def = graph_util.convert_variables_to_constants(
        sess,  # The session
        sess.graph_def,  # input_graph_def is useful for retrieving the nodes
        ["Placeholder", "output/Sigmoid"])

    # Step 4
    # output folder
    output_fld = './'
    # output pb file name
    output_model_file = 'model.pb'
    # write the graph
    graph_io.write_graph(output_graph_def, pb_model + output_fld, output_model_file, as_text=False) 
開發者ID:junqiangchen,項目名稱:LiTS---Liver-Tumor-Segmentation-Challenge,代碼行數:28,代碼來源:util.py

示例15: freeze_graph_def

# 需要導入模塊: from tensorflow.python.framework import graph_util [as 別名]
# 或者: from tensorflow.python.framework.graph_util import convert_variables_to_constants [as 別名]
def freeze_graph_def(sess, input_graph_def, output_node_names):
    for node in input_graph_def.node:
        if node.op == 'RefSwitch':
            node.op = 'Switch'
            for index in xrange(len(node.input)):
                if 'moving_' in node.input[index]:
                    node.input[index] = node.input[index] + '/read'
        elif node.op == 'AssignSub':
            node.op = 'Sub'
            if 'use_locking' in node.attr: del node.attr['use_locking']
        elif node.op == 'AssignAdd':
            node.op = 'Add'
            if 'use_locking' in node.attr: del node.attr['use_locking']
    
    # Get the list of important nodes
    whitelist_names = []
    for node in input_graph_def.node:
        if (node.name.startswith('InceptionResnet') or node.name.startswith('embeddings') or 
                node.name.startswith('image_batch') or node.name.startswith('label_batch') or
                node.name.startswith('phase_train') or node.name.startswith('Logits')):
            whitelist_names.append(node.name)

    # Replace all the variables in the graph with constants of the same values
    output_graph_def = graph_util.convert_variables_to_constants(
        sess, input_graph_def, output_node_names.split(","),
        variable_names_whitelist=whitelist_names)
    return output_graph_def 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:29,代碼來源:freeze_graph.py


注:本文中的tensorflow.python.framework.graph_util.convert_variables_to_constants方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。