本文整理匯總了Python中tensorflow.python.framework.errors_impl.InvalidArgumentError方法的典型用法代碼示例。如果您正苦於以下問題:Python errors_impl.InvalidArgumentError方法的具體用法?Python errors_impl.InvalidArgumentError怎麽用?Python errors_impl.InvalidArgumentError使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.framework.errors_impl
的用法示例。
在下文中一共展示了errors_impl.InvalidArgumentError方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testLoadExistingVariablesDifferentShapeDefaultDoesNotAllowReshape
# 需要導入模塊: from tensorflow.python.framework import errors_impl [as 別名]
# 或者: from tensorflow.python.framework.errors_impl import InvalidArgumentError [as 別名]
def testLoadExistingVariablesDifferentShapeDefaultDoesNotAllowReshape(self):
model_dir = tempfile.mkdtemp('load_existing_vars_no_reshape')
if gfile.Exists(model_dir):
gfile.DeleteRecursively(model_dir)
init_value0 = [[10.0, 11.0]]
init_value1 = 20.0
var_names_to_values = {'v0': init_value0, 'v1': init_value1}
with self.cached_session() as sess:
model_path = self.create_checkpoint_from_values(var_names_to_values,
model_dir)
var0 = variables_lib2.variable('my_var0', shape=[2, 1])
var1 = variables_lib2.variable('my_var1', shape=[])
vars_to_restore = {'v0': var0, 'v1': var1}
init_fn = variables_lib2.assign_from_checkpoint_fn(
model_path, vars_to_restore)
# Initialize the variables.
sess.run(variables_lib.global_variables_initializer())
# Perform the assignment.
with self.assertRaises(errors_impl.InvalidArgumentError):
init_fn(sess)
示例2: test_nan
# 需要導入模塊: from tensorflow.python.framework import errors_impl [as 別名]
# 或者: from tensorflow.python.framework.errors_impl import InvalidArgumentError [as 別名]
def test_nan(self):
with self.assertRaisesRegexp(errors_impl.InvalidArgumentError,
'Tensor had NaN values'):
self.eval([self.checked_nan_lt])
示例3: test_gather_nd
# 需要導入模塊: from tensorflow.python.framework import errors_impl [as 別名]
# 或者: from tensorflow.python.framework.errors_impl import InvalidArgumentError [as 別名]
def test_gather_nd(self):
if legacy_opset_pre_ver(11):
raise unittest.SkipTest(
"ONNX version {} doesn't support GatherND.".format(
defs.onnx_opset_version()))
# valid positive and negative indices for elements
data = np.array([[0, 1], [2, 3]], dtype=np.int64)
indices = np.array([[0, 0], [1, 1], [-1, -2]], dtype=np.int64)
ref_output = np.array([0, 3, 2], dtype=np.int64)
node_def = helper.make_node("GatherND", ["data", "indices"], ["outputs"])
output = run_node(node_def, [data, indices])
np.testing.assert_almost_equal(output["outputs"], ref_output)
# valid positive and negative indices for slices
data = np.arange(16, dtype=np.int32).reshape([2, 2, 4])
indices = np.array([[0, 0], [-1, -2]], dtype=np.int64)
ref_output = np.array([[0, 1, 2, 3], [8, 9, 10, 11]], dtype=np.int32)
output = run_node(node_def, [data, indices])
np.testing.assert_almost_equal(output["outputs"], ref_output)
indices = np.array([[[0, 0]], [[-1, 0]]], dtype=np.int64)
ref_output = np.array([[[0, 1, 2, 3]], [[8, 9, 10, 11]]], dtype=np.int32)
output = run_node(node_def, [data, indices])
np.testing.assert_almost_equal(output["outputs"], ref_output)
# indices out of bounds
indices = np.array([[5, 0], [-1, -3]], dtype=np.int64)
with np.testing.assert_raises(tf.errors.InvalidArgumentError):
output = run_node(node_def, [data, indices])
indices = np.array([[1, 1, 6], [-2, -1, -9]], dtype=np.int32)
with np.testing.assert_raises(tf.errors.InvalidArgumentError):
output = run_node(node_def, [data, indices])
示例4: test_scatter_elements3
# 需要導入模塊: from tensorflow.python.framework import errors_impl [as 別名]
# 或者: from tensorflow.python.framework.errors_impl import InvalidArgumentError [as 別名]
def test_scatter_elements3(self):
# indices out of bounds
data = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], dtype=np.float32)
indices = np.array([[0, 1, 2]], dtype=np.int64)
updates = np.array([[1.1, 2.1, 3.1]], dtype=np.float32)
if legacy_opset_pre_ver(11):
node_def = helper.make_node("Scatter", ["data", "indices", "updates"],
["outputs"])
else:
node_def = helper.make_node("ScatterElements",
["data", "indices", "updates"], ["outputs"])
with np.testing.assert_raises(tf.errors.InvalidArgumentError):
output = run_node(node_def, [data, indices, updates])
示例5: _do_call
# 需要導入模塊: from tensorflow.python.framework import errors_impl [as 別名]
# 或者: from tensorflow.python.framework.errors_impl import InvalidArgumentError [as 別名]
def _do_call(self, dp):
z = len(dp[0])
assert len(dp) == len(self.input_vars), \
"{} != {}".format(len(dp), len(self.input_vars))
feed = dict(zip(self.input_vars, dp))
try:
output = self.session.run(self.output_vars, feed_dict=feed)
output.append(True)
except InvalidArgumentError:
print("InvalidArgumentError during session.run")
output = [[[0] * 6] * z, [0] * z, 0, False]
return output
示例6: _get_NN_prediction
# 需要導入模塊: from tensorflow.python.framework import errors_impl [as 別名]
# 或者: from tensorflow.python.framework.errors_impl import InvalidArgumentError [as 別名]
def _get_NN_prediction(self, image, retry=False):
if retry:
while True:
try:
res = self._get_NN_prediction_wrapped(image)
except InvalidArgumentError as e:
pass
time.sleep(1)
else:
return self._get_NN_prediction_wrapped(image)
示例7: test_gather
# 需要導入模塊: from tensorflow.python.framework import errors_impl [as 別名]
# 或者: from tensorflow.python.framework.errors_impl import InvalidArgumentError [as 別名]
def test_gather(self):
node_def = helper.make_node("Gather", ["X", "Y"], ["Z"])
x = self._get_rnd_float32(shape=[10, 10])
y = [[0, 1], [1, 2]]
output = run_node(node_def, [x, y])
test_output = np.zeros((2, 2, 10))
for i in range(0, 2):
for j in range(0, 10):
test_output[0][i][j] = x[i][j]
for i in range(0, 2):
for j in range(0, 10):
test_output[1][i][j] = x[i + 1][j]
np.testing.assert_almost_equal(output["Z"], test_output)
if defs.onnx_opset_version() >= 11:
# test negative indices
y = [[-10, -9], [1, -8]]
output = run_node(node_def, [x, y])
np.testing.assert_almost_equal(output["Z"], test_output)
# test out of bound indices
for y in ([[-10, 11], [1, -8]], [[-10, -11], [1, -8]]):
try:
output = run_node(node_def, [x, y])
np.testing.assert_almost_equal(output["Z"], test_output)
raise AssertionError("Expected ValueError not raised for indices %d" %
str(y))
except InvalidArgumentError as e:
assert 'Gather indices are out of bound' in str(e), str(y)
# test non-0 and negative axis
axis = -3
node_def = helper.make_node("Gather", ["X", "Y"], ["Z"], axis=axis)
x = np.reshape(np.arange(5 * 4 * 3 * 2), (5, 4, 3, 2))
y = np.array([0, 1, 3])
test_output = np.take(x, y, axis=axis)
output = run_node(node_def, [x, y])
np.testing.assert_almost_equal(output["Z"], test_output)
# test axis attribute validation
for axis in [-5, 4, 10]:
try:
node_def = helper.make_node("Gather", ["X", "Y"], ["Z"], axis=axis)
run_node(node_def, [x, y])
raise AssertionError(
"Expected ValueError not raised for axis value %d" % axis)
except ValueError as e:
assert 'out of bounds' in str(e), str(e) + ' for axis ' + str(axis)
示例8: test_scatter_nd
# 需要導入模塊: from tensorflow.python.framework import errors_impl [as 別名]
# 或者: from tensorflow.python.framework.errors_impl import InvalidArgumentError [as 別名]
def test_scatter_nd(self):
if legacy_opset_pre_ver(11):
raise unittest.SkipTest(
"ONNX version {} doesn't support ScatterND.".format(
defs.onnx_opset_version()))
# valid positve and negative indices for elements
data = np.array([1, 2, 3, 4, 5, 6, 7, 8], dtype=np.float32)
indices = np.array([[4], [3], [1], [7]], dtype=np.int64)
updates = np.array([9, 10, 11, 12], dtype=np.float32)
ref_output = np.array([1, 11, 3, 10, 9, 6, 7, 12], dtype=np.float32)
node_def = helper.make_node("ScatterND", ["data", "indices", "updates"],
["outputs"])
output = run_node(node_def, [data, indices, updates])
np.testing.assert_almost_equal(output["outputs"], ref_output)
# valid positive and negative indices for slices
data = np.reshape(np.arange(1, 25, dtype=np.float32), [2, 3, 4])
indices = np.array([[-2, -1], [1, 0]], dtype=np.int64)
updates = np.array([[39, 40, 41, 42], [43, 44, 45, 46]], dtype=np.float32)
ref_output = np.array(
[[[1, 2, 3, 4], [5, 6, 7, 8], [39, 40, 41, 42]],
[[43, 44, 45, 46], [17, 18, 19, 20], [21, 22, 23, 24]]],
dtype=np.float32)
output = run_node(node_def, [data, indices, updates])
np.testing.assert_almost_equal(output["outputs"], ref_output)
indices = np.array([[-1]], dtype=np.int64)
updates = np.array([[[43, 44, 45, 46], [47, 48, 49, 50], [51, 52, 53, 54]]],
dtype=np.float32)
ref_output = np.array(
[[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]],
[[43, 44, 45, 46], [47, 48, 49, 50], [51, 52, 53, 54]]],
dtype=np.float32)
output = run_node(node_def, [data, indices, updates])
np.testing.assert_almost_equal(output["outputs"], ref_output)
# indices out of bounds
indices = np.array([[0, 1, 2], [-1, -1, -3], [-2, -3, -4], [0, 2, -5]],
dtype=np.int64)
updates = np.array([37, 52, 30, 39], dtype=np.float32)
with np.testing.assert_raises(tf.errors.InvalidArgumentError):
output = run_node(node_def, [data, indices, updates])
indices = np.array([[0, 1], [-1, -1], [-2, -4]], dtype=np.int64)
updates = np.array([[35, 36, 37, 38], [51, 52, 53, 54], [31, 32, 33, 34]],
dtype=np.float32)
with np.testing.assert_raises(tf.errors.InvalidArgumentError):
output = run_node(node_def, [data, indices, updates])
示例9: _random_search
# 需要導入模塊: from tensorflow.python.framework import errors_impl [as 別名]
# 或者: from tensorflow.python.framework.errors_impl import InvalidArgumentError [as 別名]
def _random_search(names_train, names_valid, y_train, y_valid, parameter_space, args):
"""Perform random search over given hyper-parameter space."""
def sample_parameters(parameter_space):
"""Sample parameters from the parameter space."""
parameters = OrderedDict()
for key, vals in parameter_space.items():
parameters[key] = choice(vals) # sample a value randomly
return parameters
searched_parameters = set()
best_valid_score = np.float64('-inf')
best_parameters = None
count = 1
try:
while True:
parameters = sample_parameters(parameter_space)
if str(parameters) in searched_parameters:
continue
_LOGGER.info('---------- ({}) Start experimenting with a new parameter set ----------\n'
.format(count))
_LOGGER.info('Hyper-parameters:\n{}'.format(json.dumps(parameters, indent=2)))
# construct the model name
model_name = _construct_model_name(parameters)
model_path = os.path.join(args['--model-dir'], model_name)
_LOGGER.info('Model name: {}'.format(model_name))
_LOGGER.info('Initialize CharLSTM object with the new parameters...')
model = CharLSTM(**parameters)
_LOGGER.info('Started the train() method...')
score = model.train(names_train, y_train, names_valid, y_valid, model_path,
int(args['--batch-size']), int(args['--patience']))
searched_parameters.add(str(parameters))
if score > best_valid_score:
_LOGGER.info('Achieved best validation score so far in the search.')
_LOGGER.info('Hyper-parameters:\n{}'.format(json.dumps(parameters, indent=2)))
best_valid_score = score
best_parameters = parameters
_LOGGER.info('-------- ({}) Finished experimenting with the parameter set --------\n\n'
.format(count))
count += 1
except KeyboardInterrupt:
_LOGGER.info('Random Search finishes because of Keyboard Interrupt.')
_LOGGER.info('Best Validation Score: {:.3f}'.format(best_valid_score))
_LOGGER.info('Best Hyper-parameters:\n{}'.format(json.dumps(best_parameters, indent=2)))
except InvalidArgumentError as error:
_LOGGER.exception(error)
_LOGGER.info('-------- ({}) Skip the parameter set --------\n\n'.format(count))