本文整理匯總了Python中tensorflow.python.framework.errors.OpError方法的典型用法代碼示例。如果您正苦於以下問題:Python errors.OpError方法的具體用法?Python errors.OpError怎麽用?Python errors.OpError使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.framework.errors
的用法示例。
在下文中一共展示了errors.OpError方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: GetTempDir
# 需要導入模塊: from tensorflow.python.framework import errors [as 別名]
# 或者: from tensorflow.python.framework.errors import OpError [as 別名]
def GetTempDir():
"""Return a temporary directory for tests to use."""
global _googletest_temp_dir
if not _googletest_temp_dir:
first_frame = tf_inspect.stack()[-1][0]
temp_dir = os.path.join(tempfile.gettempdir(),
os.path.basename(tf_inspect.getfile(first_frame)))
temp_dir = tempfile.mkdtemp(prefix=temp_dir.rstrip('.py'))
def delete_temp_dir(dirname=temp_dir):
try:
file_io.delete_recursively(dirname)
except errors.OpError as e:
logging.error('Error removing %s: %s', dirname, e)
atexit.register(delete_temp_dir)
_googletest_temp_dir = temp_dir
return _googletest_temp_dir
示例2: _do_call
# 需要導入模塊: from tensorflow.python.framework import errors [as 別名]
# 或者: from tensorflow.python.framework.errors import OpError [as 別名]
def _do_call(self, fn, *args):
try:
return fn(*args)
except errors.OpError as e:
message = compat.as_text(e.message)
m = BaseSession._NODEDEF_NAME_RE.search(message)
node_def = None
op = None
if m is not None:
node_name = m.group(1)
try:
op = self._graph.get_operation_by_name(node_name)
node_def = op.node_def
except KeyError:
pass
raise type(e)(node_def, op, message)
示例3: file_exists
# 需要導入模塊: from tensorflow.python.framework import errors [as 別名]
# 或者: from tensorflow.python.framework.errors import OpError [as 別名]
def file_exists(filename):
"""Determines whether a path exists or not.
Args:
filename: string, a path
Returns:
True if the path exists, whether its a file or a directory.
False if the path does not exist and there are no filesystem errors.
Raises:
errors.OpError: Propagates any errors reported by the FileSystem API.
"""
try:
with errors.raise_exception_on_not_ok_status() as status:
pywrap_tensorflow.FileExists(compat.as_bytes(filename), status)
except errors.NotFoundError:
return False
return True
示例4: read_file_to_string
# 需要導入模塊: from tensorflow.python.framework import errors [as 別名]
# 或者: from tensorflow.python.framework.errors import OpError [as 別名]
def read_file_to_string(filename, binary_mode=False):
"""Reads the entire contents of a file to a string.
Args:
filename: string, path to a file
binary_mode: whether to open the file in binary mode or not. This changes
the type of the object returned.
Returns:
contents of the file as a string or bytes.
Raises:
errors.OpError: Raises variety of errors that are subtypes e.g.
NotFoundError etc.
"""
if binary_mode:
f = FileIO(filename, mode="rb")
else:
f = FileIO(filename, mode="r")
return f.read()
示例5: stat
# 需要導入模塊: from tensorflow.python.framework import errors [as 別名]
# 或者: from tensorflow.python.framework.errors import OpError [as 別名]
def stat(filename):
"""Returns file statistics for a given path.
Args:
filename: string, path to a file
Returns:
FileStatistics struct that contains information about the path
Raises:
errors.OpError: If the operation fails.
"""
file_statistics = pywrap_tensorflow.FileStatistics()
with errors.raise_exception_on_not_ok_status() as status:
pywrap_tensorflow.Stat(compat.as_bytes(filename), file_statistics, status)
return file_statistics
示例6: Load
# 需要導入模塊: from tensorflow.python.framework import errors [as 別名]
# 或者: from tensorflow.python.framework.errors import OpError [as 別名]
def Load(self):
"""Loads new values.
The watcher will load from one path at a time; as soon as that path stops
yielding events, it will move on to the next path. We assume that old paths
are never modified after a newer path has been written. As a result, Load()
can be called multiple times in a row without losing events that have not
been yielded yet. In other words, we guarantee that every event will be
yielded exactly once.
Yields:
All values that have not been yielded yet.
Raises:
DirectoryDeletedError: If the directory has been permanently deleted
(as opposed to being temporarily unavailable).
"""
try:
for event in self._LoadInternal():
yield event
except errors.OpError:
if not gfile.Exists(self._directory):
raise DirectoryDeletedError(
'Directory %s has been permanently deleted' % self._directory)
示例7: _SetPath
# 需要導入模塊: from tensorflow.python.framework import errors [as 別名]
# 或者: from tensorflow.python.framework.errors import OpError [as 別名]
def _SetPath(self, path):
"""Sets the current path to watch for new events.
This also records the size of the old path, if any. If the size can't be
found, an error is logged.
Args:
path: The full path of the file to watch.
"""
old_path = self._path
if old_path and not io_wrapper.IsGCSPath(old_path):
try:
# We're done with the path, so store its size.
size = gfile.Stat(old_path).length
logging.debug('Setting latest size of %s to %d', old_path, size)
self._finalized_sizes[old_path] = size
except errors.OpError as e:
logging.error('Unable to get size of %s: %s', old_path, e)
self._path = path
self._loader = self._loader_factory(path)
示例8: get_matching_files
# 需要導入模塊: from tensorflow.python.framework import errors [as 別名]
# 或者: from tensorflow.python.framework.errors import OpError [as 別名]
def get_matching_files(filename):
"""Returns a list of files that match the given pattern.
Args:
filename: string, the pattern
Returns:
Returns a list of strings containing filenames that match the given pattern.
Raises:
errors.OpError: If there are filesystem / directory listing errors.
"""
with errors.raise_exception_on_not_ok_status() as status:
# Convert each element to string, since the return values of the
# vector of string should be interpreted as strings, not bytes.
return [compat.as_str_any(matching_filename)
for matching_filename in pywrap_tensorflow.GetMatchingFiles(
compat.as_bytes(filename), status)]
示例9: test_linear_model_mismatched_dense_values
# 需要導入模塊: from tensorflow.python.framework import errors [as 別名]
# 或者: from tensorflow.python.framework.errors import OpError [as 別名]
def test_linear_model_mismatched_dense_values(self):
column = fc.weighted_categorical_column(
categorical_column=fc.categorical_column_with_identity(
key='ids', num_buckets=3),
weight_feature_key='values')
with ops.Graph().as_default():
model = linear.LinearModel((column,), sparse_combiner='mean')
predictions = model({
'ids':
sparse_tensor.SparseTensorValue(
indices=((0, 0), (1, 0), (1, 1)),
values=(0, 2, 1),
dense_shape=(2, 2)),
'values': ((.5,), (1.,))
})
# Disabling the constant folding optimizer here since it changes the
# error message differently on CPU and GPU.
config = config_pb2.ConfigProto()
config.graph_options.rewrite_options.constant_folding = (
rewriter_config_pb2.RewriterConfig.OFF)
with _initialized_session(config):
with self.assertRaisesRegexp(errors.OpError, 'Incompatible shapes'):
self.evaluate(predictions)
示例10: get_summary_writer
# 需要導入模塊: from tensorflow.python.framework import errors [as 別名]
# 或者: from tensorflow.python.framework.errors import OpError [as 別名]
def get_summary_writer(tensorboard_dir):
"""Creates a directory for writing summaries and returns a writer."""
tf.logging.info('TensorBoard directory: %s', tensorboard_dir)
tf.logging.info('Deleting prior data if exists...')
try:
gfile.DeleteRecursively(tensorboard_dir)
except errors.OpError as err:
tf.logging.error('Directory did not exist? Error: %s', err)
tf.logging.info('Deleted! Creating the directory again...')
gfile.MakeDirs(tensorboard_dir)
tf.logging.info('Created! Instatiating SummaryWriter...')
summary_writer = tf.summary.FileWriter(tensorboard_dir)
return summary_writer
示例11: __init__
# 需要導入模塊: from tensorflow.python.framework import errors [as 別名]
# 或者: from tensorflow.python.framework.errors import OpError [as 別名]
def __init__(self,
performed_action,
run_metadata=None,
client_graph_def=None,
tf_error=None):
"""Constructor for `OnRunEndRequest`.
Args:
performed_action: (`OnRunStartAction`) Actually-performed action by the
debug-wrapper session.
run_metadata: run_metadata output from the run() call (if any).
client_graph_def: (GraphDef) GraphDef from the client side, i.e., from
the python front end of TensorFlow. Can be obtained with
session.graph.as_graph_def().
tf_error: (errors.OpError subtypes) TensorFlow OpError that occurred
during the run (if any).
"""
_check_type(performed_action, str)
self.performed_action = performed_action
if run_metadata is not None:
_check_type(run_metadata, config_pb2.RunMetadata)
self.run_metadata = run_metadata
self.client_graph_def = client_graph_def
self.tf_error = tf_error
示例12: close
# 需要導入模塊: from tensorflow.python.framework import errors [as 別名]
# 或者: from tensorflow.python.framework.errors import OpError [as 別名]
def close(self):
"""Closes this session.
Calling this method frees all resources associated with the session.
Raises:
tf.errors.OpError: Or one of its subclasses if an error occurs while
closing the TensorFlow session.
"""
with self._extend_lock:
if self._opened and not self._closed:
self._closed = True
with errors.raise_exception_on_not_ok_status() as status:
tf_session.TF_CloseDeprecatedSession(self._session, status)
示例13: __exit__
# 需要導入模塊: from tensorflow.python.framework import errors [as 別名]
# 或者: from tensorflow.python.framework.errors import OpError [as 別名]
def __exit__(self, exec_type, exec_value, exec_tb):
if exec_type is errors.OpError:
logging.error('Session closing due to OpError: %s', (exec_value,))
self._default_session_context_manager.__exit__(
exec_type, exec_value, exec_tb)
self._default_graph_context_manager.__exit__(exec_type, exec_value, exec_tb)
self._default_session_context_manager = None
self._default_graph_context_manager = None
self.close()
示例14: reset
# 需要導入模塊: from tensorflow.python.framework import errors [as 別名]
# 或者: from tensorflow.python.framework.errors import OpError [as 別名]
def reset(target, containers=None, config=None):
"""Resets resource containers on `target`, and close all connected sessions.
A resource container is distributed across all workers in the
same cluster as `target`. When a resource container on `target`
is reset, resources associated with that container will be cleared.
In particular, all Variables in the container will become undefined:
they lose their values and shapes.
NOTE:
(i) reset() is currently only implemented for distributed sessions.
(ii) Any sessions on the master named by `target` will be closed.
If no resource containers are provided, all containers are reset.
Args:
target: The execution engine to connect to.
containers: A list of resource container name strings, or `None` if all of
all the containers are to be reset.
config: (Optional.) Protocol buffer with configuration options.
Raises:
tf.errors.OpError: Or one of its subclasses if an error occurs while
resetting containers.
"""
if target is not None:
target = compat.as_bytes(target)
if containers is not None:
containers = [compat.as_bytes(c) for c in containers]
else:
containers = []
tf_session.TF_Reset(target, containers, config)
示例15: delete_file
# 需要導入模塊: from tensorflow.python.framework import errors [as 別名]
# 或者: from tensorflow.python.framework.errors import OpError [as 別名]
def delete_file(filename):
"""Deletes the file located at 'filename'.
Args:
filename: string, a filename
Raises:
errors.OpError: Propagates any errors reported by the FileSystem API. E.g.,
NotFoundError if the file does not exist.
"""
with errors.raise_exception_on_not_ok_status() as status:
pywrap_tensorflow.DeleteFile(compat.as_bytes(filename), status)