當前位置: 首頁>>代碼示例>>Python>>正文


Python dtypes.uint16方法代碼示例

本文整理匯總了Python中tensorflow.python.framework.dtypes.uint16方法的典型用法代碼示例。如果您正苦於以下問題:Python dtypes.uint16方法的具體用法?Python dtypes.uint16怎麽用?Python dtypes.uint16使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.framework.dtypes的用法示例。


在下文中一共展示了dtypes.uint16方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _convert_string_dtype

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import uint16 [as 別名]
def _convert_string_dtype(dtype):
  if dtype == 'float16':
    return dtypes_module.float16
  if dtype == 'float32':
    return dtypes_module.float32
  elif dtype == 'float64':
    return dtypes_module.float64
  elif dtype == 'int16':
    return dtypes_module.int16
  elif dtype == 'int32':
    return dtypes_module.int32
  elif dtype == 'int64':
    return dtypes_module.int64
  elif dtype == 'uint8':
    return dtypes_module.int8
  elif dtype == 'uint16':
    return dtypes_module.uint16
  else:
    raise ValueError('Unsupported dtype:', dtype) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:21,代碼來源:backend.py

示例2: testConvertBetweenInt16AndInt8

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import uint16 [as 別名]
def testConvertBetweenInt16AndInt8(self):
    with self.test_session(use_gpu=True):
      # uint8, uint16
      self._convert([0, 255 * 256], dtypes.uint16, dtypes.uint8,
                    [0, 255])
      self._convert([0, 255], dtypes.uint8, dtypes.uint16,
                    [0, 255 * 256])
      # int8, uint16
      self._convert([0, 127 * 2 * 256], dtypes.uint16, dtypes.int8,
                    [0, 127])
      self._convert([0, 127], dtypes.int8, dtypes.uint16,
                    [0, 127 * 2 * 256])
      # int16, uint16
      self._convert([0, 255 * 256], dtypes.uint16, dtypes.int16,
                    [0, 255 * 128])
      self._convert([0, 255 * 128], dtypes.int16, dtypes.uint16,
                    [0, 255 * 256]) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:19,代碼來源:image_ops_test.py

示例3: ExtractBitsFromFloat16

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import uint16 [as 別名]
def ExtractBitsFromFloat16(x):
  return np.asscalar(np.asarray(x, dtype=np.float16).view(np.uint16)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:4,代碼來源:tensor_util.py

示例4: testSyntheticUint16

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import uint16 [as 別名]
def testSyntheticUint16(self):
    with self.test_session(use_gpu=True) as sess:
      # Encode it, then decode it
      image0 = constant_op.constant(_SimpleColorRamp(), dtype=dtypes.uint16)
      png0 = image_ops.encode_png(image0, compression=7)
      image1 = image_ops.decode_png(png0, dtype=dtypes.uint16)
      png0, image0, image1 = sess.run([png0, image0, image1])

      # PNG is lossless
      self.assertAllEqual(image0, image1)

      # Smooth ramps compress well, but not too well
      self.assertGreaterEqual(len(png0), 800)
      self.assertLessEqual(len(png0), 1500) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:16,代碼來源:image_ops_test.py

示例5: testSyntheticTwoChannelUint16

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import uint16 [as 別名]
def testSyntheticTwoChannelUint16(self):
    with self.test_session(use_gpu=True) as sess:
      # Strip the b channel from an rgb image to get a two-channel image.
      gray_alpha = _SimpleColorRamp()[:, :, 0:2]
      image0 = constant_op.constant(gray_alpha, dtype=dtypes.uint16)
      png0 = image_ops.encode_png(image0, compression=7)
      image1 = image_ops.decode_png(png0, dtype=dtypes.uint16)
      png0, image0, image1 = sess.run([png0, image0, image1])
      self.assertEqual(2, image0.shape[-1])
      self.assertAllEqual(image0, image1) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:12,代碼來源:image_ops_test.py

示例6: _convert_string_dtype

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import uint16 [as 別名]
def _convert_string_dtype(dtype):
  """Get the type from a string.

  Arguments:
      dtype: A string representation of a type.

  Returns:
      The type requested.

  Raises:
      ValueError: if `dtype` is not supported.
  """
  if dtype == 'float16':
    return dtypes_module.float16
  if dtype == 'float32':
    return dtypes_module.float32
  elif dtype == 'float64':
    return dtypes_module.float64
  elif dtype == 'int16':
    return dtypes_module.int16
  elif dtype == 'int32':
    return dtypes_module.int32
  elif dtype == 'int64':
    return dtypes_module.int64
  elif dtype == 'uint8':
    return dtypes_module.int8
  elif dtype == 'uint16':
    return dtypes_module.uint16
  else:
    raise ValueError('Unsupported dtype:', dtype) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:32,代碼來源:backend.py

示例7: _is_known_unsigned_by_dtype

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import uint16 [as 別名]
def _is_known_unsigned_by_dtype(dt):
  """Helper returning True if dtype is known to be unsigned."""
  return {
      dtypes.bool: True,
      dtypes.uint8: True,
      dtypes.uint16: True,
  }.get(dt.base_dtype, False) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:9,代碼來源:util.py

示例8: cumsum

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import uint16 [as 別名]
def cumsum(x, axis=0, exclusive=False, reverse=False, name=None):
  """Compute the cumulative sum of the tensor `x` along `axis`.

  By default, this op performs an inclusive cumsum, which means that the first
  element of the input is identical to the first element of the output:
  ```prettyprint
  tf.cumsum([a, b, c]) ==> [a, a + b, a + b + c]
  ```

  By setting the `exclusive` kwarg to `True`, an exclusive cumsum is performed
  instead:
  ```prettyprint
  tf.cumsum([a, b, c], exclusive=True) ==> [0, a, a + b]
  ```

  By setting the `reverse` kwarg to `True`, the cumsum is performed in the
  opposite direction:
  ```prettyprint
  tf.cumsum([a, b, c], reverse=True) ==> [a + b + c, b + c, c]
  ```
  This is more efficient than using separate `tf.reverse` ops.

  The `reverse` and `exclusive` kwargs can also be combined:
  ```prettyprint
  tf.cumsum([a, b, c], exclusive=True, reverse=True) ==> [b + c, c, 0]
  ```

  Args:
    x: A `Tensor`. Must be one of the following types: `float32`, `float64`,
       `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`,
       `complex128`, `qint8`, `quint8`, `qint32`, `half`.
    axis: A `Tensor` of type `int32` (default: 0).
    exclusive: If `True`, perform exclusive cumsum.
    reverse: A `bool` (default: False).
    name: A name for the operation (optional).

  Returns:
    A `Tensor`. Has the same type as `x`.
  """
  with ops.name_scope(name, "Cumsum", [x]) as name:
    x = ops.convert_to_tensor(x, name="x")
    return gen_math_ops.cumsum(
        x, axis, exclusive=exclusive, reverse=reverse, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:45,代碼來源:math_ops.py

示例9: cumprod

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import uint16 [as 別名]
def cumprod(x, axis=0, exclusive=False, reverse=False, name=None):
  """Compute the cumulative product of the tensor `x` along `axis`.

  By default, this op performs an inclusive cumprod, which means that the
  first
  element of the input is identical to the first element of the output:
  ```prettyprint
  tf.cumprod([a, b, c]) ==> [a, a * b, a * b * c]
  ```

  By setting the `exclusive` kwarg to `True`, an exclusive cumprod is
  performed
  instead:
  ```prettyprint
  tf.cumprod([a, b, c], exclusive=True) ==> [1, a, a * b]
  ```

  By setting the `reverse` kwarg to `True`, the cumprod is performed in the
  opposite direction:
  ```prettyprint
  tf.cumprod([a, b, c], reverse=True) ==> [a * b * c, b * c, c]
  ```
  This is more efficient than using separate `tf.reverse` ops.

  The `reverse` and `exclusive` kwargs can also be combined:
  ```prettyprint
  tf.cumprod([a, b, c], exclusive=True, reverse=True) ==> [b * c, c, 1]
  ```

  Args:
    x: A `Tensor`. Must be one of the following types: `float32`, `float64`,
       `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`,
       `complex128`, `qint8`, `quint8`, `qint32`, `half`.
    axis: A `Tensor` of type `int32` (default: 0).
    exclusive: If `True`, perform exclusive cumprod.
    reverse: A `bool` (default: False).
    name: A name for the operation (optional).

  Returns:
    A `Tensor`. Has the same type as `x`.
  """
  with ops.name_scope(name, "Cumprod", [x]) as name:
    x = ops.convert_to_tensor(x, name="x")
    return gen_math_ops.cumprod(
        x, axis, exclusive=exclusive, reverse=reverse, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:47,代碼來源:math_ops.py

示例10: cumsum

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import uint16 [as 別名]
def cumsum(x, axis=0, exclusive=False, reverse=False, name=None):
  """Compute the cumulative sum of the tensor `x` along `axis`.

  By default, this op performs an inclusive cumsum, which means that the first
  element of the input is identical to the first element of the output:
  ```prettyprint
  tf.cumsum([a, b, c]) ==> [a, a + b, a + b + c]
  ```

  By setting the `exclusive` kwarg to `True`, an exclusive cumsum is performed
  instead:
  ```prettyprint
  tf.cumsum([a, b, c], exclusive=True) ==> [0, a, a + b]
  ```

  By setting the `reverse` kwarg to `True`, the cumsum is performed in the
  opposite direction:
  ```prettyprint
  tf.cumsum([a, b, c], reverse=True) ==> [a + b + c, b + c, c]
  ```
  This is more efficient than using separate `tf.reverse` ops.

  The `reverse` and `exclusive` kwargs can also be combined:
  ```prettyprint
  tf.cumsum([a, b, c], exclusive=True, reverse=True) ==> [b + c, c, 0]
  ```

  Args:
    x: A `Tensor`. Must be one of the following types: `float32`, `float64`,
       `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`,
       `complex128`, `qint8`, `quint8`, `qint32`, `half`.
       axis: A `Tensor` of type `int32` (default: 0).
       reverse: A `bool` (default: False).
       name: A name for the operation (optional).

  Returns:
    A `Tensor`. Has the same type as `x`.
  """
  with ops.name_scope(name, "Cumsum", [x]) as name:
    x = ops.convert_to_tensor(x, name="x")
    return gen_math_ops.cumsum(
        x, axis, exclusive=exclusive, reverse=reverse, name=name) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:44,代碼來源:math_ops.py

示例11: cumprod

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import uint16 [as 別名]
def cumprod(x, axis=0, exclusive=False, reverse=False, name=None):
  """Compute the cumulative product of the tensor `x` along `axis`.

  By default, this op performs an inclusive cumprod, which means that the
  first
  element of the input is identical to the first element of the output:
  ```prettyprint
  tf.cumprod([a, b, c]) ==> [a, a * b, a * b * c]
  ```

  By setting the `exclusive` kwarg to `True`, an exclusive cumprod is
  performed
  instead:
  ```prettyprint
  tf.cumprod([a, b, c], exclusive=True) ==> [1, a, a * b]
  ```

  By setting the `reverse` kwarg to `True`, the cumprod is performed in the
  opposite direction:
  ```prettyprint
  tf.cumprod([a, b, c], reverse=True) ==> [a * b * c, b * c, c]
  ```
  This is more efficient than using separate `tf.reverse` ops.

  The `reverse` and `exclusive` kwargs can also be combined:
  ```prettyprint
  tf.cumprod([a, b, c], exclusive=True, reverse=True) ==> [b * c, c, 1]
  ```

  Args:
    x: A `Tensor`. Must be one of the following types: `float32`, `float64`,
       `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`,
       `complex128`, `qint8`, `quint8`, `qint32`, `half`.
    axis: A `Tensor` of type `int32` (default: 0).
    reverse: A `bool` (default: False).
    name: A name for the operation (optional).

  Returns:
    A `Tensor`. Has the same type as `x`.
  """
  with ops.name_scope(name, "Cumprod", [x]) as name:
    x = ops.convert_to_tensor(x, name="x")
    return gen_math_ops.cumprod(
        x, axis, exclusive=exclusive, reverse=reverse, name=name) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:46,代碼來源:math_ops.py

示例12: cumsum

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import uint16 [as 別名]
def cumsum(x, axis=0, exclusive=False, reverse=False, name=None):
  """Compute the cumulative sum of the tensor `x` along `axis`.

  By default, this op performs an inclusive cumsum, which means that the first
  element of the input is identical to the first element of the output:

  ```python
  tf.cumsum([a, b, c])  # [a, a + b, a + b + c]
  ```

  By setting the `exclusive` kwarg to `True`, an exclusive cumsum is performed
  instead:

  ```python
  tf.cumsum([a, b, c], exclusive=True)  # [0, a, a + b]
  ```

  By setting the `reverse` kwarg to `True`, the cumsum is performed in the
  opposite direction:

  ```python
  tf.cumsum([a, b, c], reverse=True)  # [a + b + c, b + c, c]
  ```

  This is more efficient than using separate `tf.reverse` ops.

  The `reverse` and `exclusive` kwargs can also be combined:

  ```python
  tf.cumsum([a, b, c], exclusive=True, reverse=True)  # [b + c, c, 0]
  ```

  Args:
    x: A `Tensor`. Must be one of the following types: `float32`, `float64`,
       `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`,
       `complex128`, `qint8`, `quint8`, `qint32`, `half`.
    axis: A `Tensor` of type `int32` (default: 0). Must be in the range
      `[-rank(x), rank(x))`.
    exclusive: If `True`, perform exclusive cumsum.
    reverse: A `bool` (default: False).
    name: A name for the operation (optional).

  Returns:
    A `Tensor`. Has the same type as `x`.
  """
  with ops.name_scope(name, "Cumsum", [x]) as name:
    x = ops.convert_to_tensor(x, name="x")
    return gen_math_ops.cumsum(
        x, axis, exclusive=exclusive, reverse=reverse, name=name) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:51,代碼來源:math_ops.py

示例13: cumprod

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import uint16 [as 別名]
def cumprod(x, axis=0, exclusive=False, reverse=False, name=None):
  """Compute the cumulative product of the tensor `x` along `axis`.

  By default, this op performs an inclusive cumprod, which means that the
  first element of the input is identical to the first element of the output:

  ```python
  tf.cumprod([a, b, c])  # [a, a * b, a * b * c]
  ```

  By setting the `exclusive` kwarg to `True`, an exclusive cumprod is
  performed
  instead:

  ```python
  tf.cumprod([a, b, c], exclusive=True)  # [1, a, a * b]
  ```

  By setting the `reverse` kwarg to `True`, the cumprod is performed in the
  opposite direction:

  ```python
  tf.cumprod([a, b, c], reverse=True)  # [a * b * c, b * c, c]
  ```

  This is more efficient than using separate `tf.reverse` ops.
  The `reverse` and `exclusive` kwargs can also be combined:

  ```python
  tf.cumprod([a, b, c], exclusive=True, reverse=True)  # [b * c, c, 1]
  ```

  Args:
    x: A `Tensor`. Must be one of the following types: `float32`, `float64`,
       `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`,
       `complex128`, `qint8`, `quint8`, `qint32`, `half`.
    axis: A `Tensor` of type `int32` (default: 0). Must be in the range
      `[-rank(x), rank(x))`.
    exclusive: If `True`, perform exclusive cumprod.
    reverse: A `bool` (default: False).
    name: A name for the operation (optional).

  Returns:
    A `Tensor`. Has the same type as `x`.
  """
  with ops.name_scope(name, "Cumprod", [x]) as name:
    x = ops.convert_to_tensor(x, name="x")
    return gen_math_ops.cumprod(
        x, axis, exclusive=exclusive, reverse=reverse, name=name) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:51,代碼來源:math_ops.py


注:本文中的tensorflow.python.framework.dtypes.uint16方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。