本文整理匯總了Python中tensorflow.python.framework.dtypes.string方法的典型用法代碼示例。如果您正苦於以下問題:Python dtypes.string方法的具體用法?Python dtypes.string怎麽用?Python dtypes.string使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.framework.dtypes
的用法示例。
在下文中一共展示了dtypes.string方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _asset_path_from_tensor
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import string [as 別名]
def _asset_path_from_tensor(path_tensor):
"""Returns the filepath value stored in constant `path_tensor`.
Args:
path_tensor: Tensor of a file-path.
Returns:
The string value i.e. path of the tensor, if valid.
Raises:
TypeError if tensor does not match expected op type, dtype or value.
"""
if not isinstance(path_tensor, ops.Tensor):
raise TypeError("Asset path tensor must be a Tensor.")
if path_tensor.op.type != "Const":
raise TypeError("Asset path tensor must be of type constant.")
if path_tensor.dtype != dtypes.string:
raise TypeError("Asset path tensor must be of dtype string.")
str_values = path_tensor.op.get_attr("value").string_val
if len(str_values) != 1:
raise TypeError("Asset path tensor must be a scalar.")
return str_values[0]
示例2: get_timestamped_export_dir
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import string [as 別名]
def get_timestamped_export_dir(export_dir_base):
"""Builds a path to a new subdirectory within the base directory.
Each export is written into a new subdirectory named using the
current time. This guarantees monotonically increasing version
numbers even across multiple runs of the pipeline.
The timestamp used is the number of seconds since epoch UTC.
Args:
export_dir_base: A string containing a directory to write the exported
graph and checkpoints.
Returns:
The full path of the new subdirectory (which is not actually created yet).
"""
export_timestamp = int(time.time())
export_dir = os.path.join(
compat.as_bytes(export_dir_base),
compat.as_bytes(str(export_timestamp)))
return export_dir
示例3: __init__
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import string [as 別名]
def __init__(self, outputs):
"""Constructor for PredictOutput.
Args:
outputs: A dict of string to `Tensor` representing the predictions.
Raises:
ValueError: if the outputs is not dict, or any of its keys are not
strings, or any of its values are not `Tensor`s.
"""
if not isinstance(outputs, dict):
raise ValueError(
'Prediction outputs must be given as a dict of string to Tensor; '
'got {}'.format(outputs))
for key, value in outputs.items():
if not isinstance(key, six.string_types):
raise ValueError(
'Prediction output key must be a string; got {}.'.format(key))
if not isinstance(value, ops.Tensor):
raise ValueError(
'Prediction output value must be a Tensor; got {}.'.format(value))
self._outputs = outputs
示例4: serialize_sparse
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import string [as 別名]
def serialize_sparse(sp_input, name=None):
"""Serialize a `SparseTensor` into a string 3-vector (1-D `Tensor`) object.
Args:
sp_input: The input `SparseTensor`.
name: A name prefix for the returned tensors (optional).
Returns:
A string 3-vector (1D `Tensor`), with each column representing the
serialized `SparseTensor`'s indices, values, and shape (respectively).
Raises:
TypeError: If `sp_input` is not a `SparseTensor`.
"""
sp_input = _convert_to_sparse_tensor(sp_input)
return gen_sparse_ops._serialize_sparse(
sp_input.indices, sp_input.values, sp_input.dense_shape, name=name)
示例5: _add_sparse_to_tensors_map
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import string [as 別名]
def _add_sparse_to_tensors_map(sp_input, container=None,
shared_name=None, name=None):
"""Add a `SparseTensor` to a `SparseTensorsMap` and return its handle.
Args:
sp_input: The input `SparseTensor`.
container: The container for the underlying `SparseTensorsMap` (optional).
shared_name: The shared name for the underlying `SparseTensorsMap`
(optional, defaults to the name of the newly created op).
name: A name prefix for the returned tensors (optional).
Returns:
A string 1-vector (1D `Tensor`), with the single element representing the
a unique handle to a `SparseTensor` stored by the `SparseTensorMap`
underlying this op.
Raises:
TypeError: If `sp_input` is not a `SparseTensor`.
"""
sp_input = _convert_to_sparse_tensor(sp_input)
return gen_sparse_ops._add_sparse_to_tensors_map(
sp_input.indices, sp_input.values, sp_input.dense_shape,
container=container, shared_name=shared_name, name=name)
示例6: to_proto
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import string [as 別名]
def to_proto(self, export_scope=None):
"""Converts a `Variable` to a `VariableDef` protocol buffer.
Args:
export_scope: Optional `string`. Name scope to remove.
Returns:
A `VariableDef` protocol buffer, or `None` if the `Variable` is not
in the specified name scope.
"""
if (export_scope is None or
self._variable.name.startswith(export_scope)):
var_def = variable_pb2.VariableDef()
var_def.variable_name = ops.strip_name_scope(
self._variable.name, export_scope)
var_def.initializer_name = ops.strip_name_scope(
self.initializer.name, export_scope)
var_def.snapshot_name = ops.strip_name_scope(
self._snapshot.name, export_scope)
if self._save_slice_info:
var_def.save_slice_info_def.MergeFrom(self._save_slice_info.to_proto(
export_scope=export_scope))
return var_def
else:
return None
示例7: _to_proto
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import string [as 別名]
def _to_proto(self, export_scope=None):
"""Converts the values to a `ValuesDef` protocol buffer.
Args:
export_scope: Optional `string`. Name scope to remove.
Returns:
A `ValuesDef` protocol buffer.
"""
values_def = control_flow_pb2.ValuesDef()
values_def.values.extend(
[ops.strip_name_scope(v, export_scope)
for v in sorted(self._values)])
for k, v in self._external_values.items():
values_def.external_values[k] = ops.strip_name_scope(
v.name, export_scope)
return values_def
示例8: _init_from_proto
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import string [as 別名]
def _init_from_proto(self, context_def, import_scope=None):
"""Creates a new `CondContext` from protocol buffer.
Args:
context_def: `CondContextDef` protocol buffer.
import_scope: Optional `string`. Name scope to add.
"""
assert isinstance(context_def, control_flow_pb2.CondContextDef)
# Create from context_def.
g = ops.get_default_graph()
self._name = ops.prepend_name_scope(
context_def.context_name, import_scope)
self._pred = g.as_graph_element(ops.prepend_name_scope(
context_def.pred_name, import_scope))
self._pivot = g.as_graph_element(ops.prepend_name_scope(
context_def.pivot_name, import_scope))
self._branch = context_def.branch
super(CondContext, self).__init__(values_def=context_def.values_def,
import_scope=import_scope)
示例9: to_proto
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import string [as 別名]
def to_proto(self, export_scope=None):
"""Converts a `CondContext` to a `CondContextDef` protocol buffer.
Args:
export_scope: Optional `string`. Name scope to remove.
Returns:
A `CondContextDef` protocol buffer.
"""
if (export_scope is None or
self.name.startswith(export_scope)):
context_def = control_flow_pb2.CondContextDef()
context_def.context_name = ops.strip_name_scope(
self.name, export_scope)
context_def.pred_name = ops.strip_name_scope(
self._pred.name, export_scope)
context_def.pivot_name = ops.strip_name_scope(
self._pivot.name, export_scope)
context_def.branch = self._branch
context_def.values_def.MergeFrom(super(CondContext, self)._to_proto(
export_scope))
return context_def
else:
return None
示例10: __init__
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import string [as 別名]
def __init__(self, parallel_iterations=10, back_prop=True, swap_memory=False,
name="while_context", grad_state=None, context_def=None,
import_scope=None):
""""Creates a `WhileContext`.
Args:
parallel_iterations: The number of iterations allowed to run in parallel.
back_prop: Whether backprop is enabled for this while loop.
swap_memory: Whether GPU-CPU memory swap is enabled for this loop.
name: Optional name prefix for the returned tensors.
grad_state: The gradient loop state.
context_def: Optional `WhileContextDef` protocol buffer to initialize
the `Whilecontext` python object from.
import_scope: Optional `string`. Name scope to add. Only used when
initialing from protocol buffer.
"""
if context_def:
self._init_from_proto(context_def, import_scope=import_scope)
else:
ControlFlowContext.__init__(self)
self._init_from_args(parallel_iterations, back_prop, swap_memory,
name)
# The gradient loop state.
self._grad_state = grad_state
示例11: __init__
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import string [as 別名]
def __init__(self, handle, dtype, session):
"""Constructs a new tensor handle.
A tensor handle for a persistent tensor is a python string
that has the form of "tensor_name;unique_id;device_name".
Args:
handle: A tensor handle.
dtype: The data type of the tensor represented by `handle`.
session: The session in which the tensor is produced.
"""
self._handle = compat.as_str_any(handle)
self._resource_handle = None
self._dtype = dtype
self._session = session
self._auto_gc_enabled = True
示例12: delete_session_tensor
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import string [as 別名]
def delete_session_tensor(handle, name=None):
"""Delete the tensor for the given tensor handle.
This is EXPERIMENTAL and subject to change.
Delete the tensor of a given tensor handle. The tensor is produced
in a previous run() and stored in the state of the session.
Args:
handle: The string representation of a persistent tensor handle.
name: Optional name prefix for the return tensor.
Returns:
A pair of graph elements. The first is a placeholder for feeding a
tensor handle and the second is a deletion operation.
"""
handle_device = TensorHandle._get_device_name(handle)
with ops.device(handle_device):
holder = array_ops.placeholder(dtypes.string)
deleter = gen_data_flow_ops._delete_session_tensor(holder, name=name)
return (holder, deleter)
示例13: _parse_example_spec
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import string [as 別名]
def _parse_example_spec(self):
"""Returns a `tf.Example` parsing spec as dict.
It is used for get_parsing_spec for `tf.parse_example`. Returned spec is a
dict from keys ('string') to `VarLenFeature`, `FixedLenFeature`, and other
supported objects. Please check documentation of ${tf.parse_example} for all
supported spec objects.
Let's say a Feature column depends on raw feature ('raw') and another
`_FeatureColumn` (input_fc). One possible implementation of
_parse_example_spec is as follows:
```python
spec = {'raw': tf.FixedLenFeature(...)}
spec.update(input_fc._parse_example_spec)
return spec
```
"""
pass
示例14: make_parsing_export_strategy
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import string [as 別名]
def make_parsing_export_strategy(feature_columns, exports_to_keep=5):
"""Create an ExportStrategy for use with Experiment, using `FeatureColumn`s.
Creates a SavedModel export that expects to be fed with a single string
Tensor containing serialized tf.Examples. At serving time, incoming
tf.Examples will be parsed according to the provided `FeatureColumn`s.
Args:
feature_columns: An iterable of `FeatureColumn`s representing the features
that must be provided at serving time (excluding labels!).
exports_to_keep: Number of exports to keep. Older exports will be
garbage-collected. Defaults to 5. Set to None to disable garbage
collection.
Returns:
An ExportStrategy that can be passed to the Experiment constructor.
"""
feature_spec = feature_column.create_feature_spec_for_parsing(feature_columns)
serving_input_fn = input_fn_utils.build_parsing_serving_input_fn(feature_spec)
return make_export_strategy(serving_input_fn, exports_to_keep=exports_to_keep)
示例15: summarize_tensor
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import string [as 別名]
def summarize_tensor(tensor, tag=None):
"""Summarize a tensor using a suitable summary type.
This function adds a summary op for `tensor`. The type of summary depends on
the shape of `tensor`. For scalars, a `scalar_summary` is created, for all
other tensors, `histogram_summary` is used.
Args:
tensor: The tensor to summarize
tag: The tag to use, if None then use tensor's op's name.
Returns:
The summary op created or None for string tensors.
"""
# Skips string tensors and boolean tensors (not handled by the summaries).
if (tensor.dtype.is_compatible_with(dtypes.string) or
tensor.dtype.base_dtype == dtypes.bool):
return None
if tensor.get_shape().ndims == 0:
# For scalars, use a scalar summary.
return _add_scalar_summary(tensor, tag)
else:
# We may land in here if the rank is still unknown. The histogram won't
# hurt if this ends up being a scalar.
return _add_histogram_summary(tensor, tag)