本文整理匯總了Python中tensorflow.python.framework.dtypes.quint8方法的典型用法代碼示例。如果您正苦於以下問題:Python dtypes.quint8方法的具體用法?Python dtypes.quint8怎麽用?Python dtypes.quint8使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.framework.dtypes
的用法示例。
在下文中一共展示了dtypes.quint8方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: add_dequantize_result_node
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import quint8 [as 別名]
def add_dequantize_result_node(self,
quantized_output_name,
original_node_name,
min_tensor_index=1):
min_max_inputs = [
"%s:%s" % (quantized_output_name, min_tensor_index),
"%s:%s" % (quantized_output_name, (min_tensor_index + 1))
]
dequantize_name = original_node_name
if self.should_merge_with_fake_quant_node():
fake_quant_node = self.state.output_node_stack[-1][0]
if original_node_name not in self.state.merged_with_fake_quant:
min_max_inputs = [fake_quant_node.input[1], fake_quant_node.input[2]]
self.state.merged_with_fake_quant[original_node_name] = True
dequantize_name = fake_quant_node.name
dequantize_node = create_node(
"Dequantize", dequantize_name,
[quantized_output_name, min_max_inputs[0], min_max_inputs[1]])
set_attr_dtype(dequantize_node, "T", dtypes.quint8)
set_attr_string(dequantize_node, "mode", b"MIN_FIRST")
self.add_output_graph_node(dequantize_node)
示例2: eightbitize_input_to_node
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import quint8 [as 別名]
def eightbitize_input_to_node(self, namespace_prefix, original_input_name,
reshape_dims_name, reduction_dims_name):
"""Takes one float input to an op, and converts it to quantized form."""
unique_input_name = unique_node_name_from_input(original_input_name)
reshape_input_name = namespace_prefix + "_reshape_" + unique_input_name
min_input_name = namespace_prefix + "_min_" + unique_input_name
max_input_name = namespace_prefix + "_max_" + unique_input_name
quantize_input_name = namespace_prefix + "_quantize_" + unique_input_name
reshape_input_node = create_node("Reshape", reshape_input_name,
[original_input_name, reshape_dims_name])
set_attr_dtype(reshape_input_node, "T", dtypes.float32)
self.add_output_graph_node(reshape_input_node)
min_input_node = create_node("Min", min_input_name,
[reshape_input_name, reduction_dims_name])
set_attr_dtype(min_input_node, "T", dtypes.float32)
set_attr_bool(min_input_node, "keep_dims", False)
self.add_output_graph_node(min_input_node)
max_input_node = create_node("Max", max_input_name,
[reshape_input_name, reduction_dims_name])
set_attr_dtype(max_input_node, "T", dtypes.float32)
set_attr_bool(max_input_node, "keep_dims", False)
self.add_output_graph_node(max_input_node)
quantize_input_node = create_node(
"QuantizeV2", quantize_input_name,
[original_input_name, min_input_name, max_input_name])
set_attr_dtype(quantize_input_node, "T", dtypes.quint8)
set_attr_string(quantize_input_node, "mode", b"MIN_FIRST")
self.add_output_graph_node(quantize_input_node)
min_output_name = quantize_input_name + ":1"
max_output_name = quantize_input_name + ":2"
return quantize_input_name, min_output_name, max_output_name
示例3: add_quantize_down_nodes
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import quint8 [as 別名]
def add_quantize_down_nodes(self, original_node, quantized_output_name):
quantized_outputs = [
quantized_output_name, quantized_output_name + ":1",
quantized_output_name + ":2"
]
min_max_inputs = None
if self.should_merge_with_fake_quant_node():
# Use the inputs to the FakeQuantWithMinMaxVars node as the inputs to
# Requantize.
fake_quant_node = self.state.output_node_stack[-1][0]
min_max_inputs = [fake_quant_node.input[1], fake_quant_node.input[2]]
assert original_node.name not in self.state.merged_with_fake_quant
self.state.merged_with_fake_quant[original_node.name] = True
elif self.fallback_quantization_range:
min_max_inputs = [
"fallback_quantization_min_value:0",
"fallback_quantization_max_value:0"
]
else:
# Add a RequantizationRange node for finding the min and max values.
requant_range_node = create_node(
"RequantizationRange", original_node.name + "_eightbit_requant_range",
quantized_outputs)
set_attr_dtype(requant_range_node, "Tinput", dtypes.qint32)
self.add_output_graph_node(requant_range_node)
min_max_inputs = [
requant_range_node.name + ":0", requant_range_node.name + ":1"
]
requantize_node = create_node("Requantize",
original_node.name + "_eightbit_requantize",
quantized_outputs + min_max_inputs)
set_attr_dtype(requantize_node, "Tinput", dtypes.qint32)
set_attr_dtype(requantize_node, "out_type", dtypes.quint8)
self.add_output_graph_node(requantize_node)
return requantize_node.name
示例4: eightbitize_conv_node
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import quint8 [as 別名]
def eightbitize_conv_node(self, original_node):
"""Replaces a Conv2D node with the eight bit equivalent sub-graph."""
all_input_names = self.add_eightbit_prologue_nodes(original_node)
quantized_conv_name = original_node.name + "_eightbit_quantized_conv"
quantized_conv_node = create_node("QuantizedConv2D", quantized_conv_name,
all_input_names)
copy_attr(quantized_conv_node, "strides", original_node.attr["strides"])
copy_attr(quantized_conv_node, "padding", original_node.attr["padding"])
set_attr_dtype(quantized_conv_node, "Tinput", dtypes.quint8)
set_attr_dtype(quantized_conv_node, "Tfilter", dtypes.quint8)
set_attr_dtype(quantized_conv_node, "out_type", dtypes.qint32)
self.add_output_graph_node(quantized_conv_node)
quantize_down_name = self.add_quantize_down_nodes(original_node,
quantized_conv_name)
self.add_dequantize_result_node(quantize_down_name, original_node.name)
示例5: eightbitize_bias_add_node
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import quint8 [as 別名]
def eightbitize_bias_add_node(self, original_node):
"""Replaces a BiasAdd node with the eight bit equivalent sub-graph."""
quantized_bias_add_name = (
original_node.name + "_eightbit_quantized_bias_add")
all_input_names = self.add_eightbit_prologue_nodes(original_node)
quantized_bias_add_node = create_node("QuantizedBiasAdd",
quantized_bias_add_name,
all_input_names)
set_attr_dtype(quantized_bias_add_node, "T1", dtypes.quint8)
set_attr_dtype(quantized_bias_add_node, "T2", dtypes.quint8)
set_attr_dtype(quantized_bias_add_node, "out_type", dtypes.qint32)
self.add_output_graph_node(quantized_bias_add_node)
quantize_down_name = self.add_quantize_down_nodes(original_node,
quantized_bias_add_name)
self.add_dequantize_result_node(quantize_down_name, original_node.name)
示例6: add_pool_function
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import quint8 [as 別名]
def add_pool_function(self, original_node, quantized_op_node):
set_attr_dtype(quantized_op_node, "T", dtypes.quint8)
copy_attr(quantized_op_node, "ksize", original_node.attr["ksize"])
copy_attr(quantized_op_node, "strides", original_node.attr["strides"])
copy_attr(quantized_op_node, "padding", original_node.attr["padding"])
示例7: add_relu_function
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import quint8 [as 別名]
def add_relu_function(self, unused_arg_node, quantized_op_node):
set_attr_dtype(quantized_op_node, "Tinput", dtypes.quint8)
示例8: eightbitize_placeholder_node
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import quint8 [as 別名]
def eightbitize_placeholder_node(self, current_node):
"""Replaces a placeholder node with a quint8 placeholder node+dequantize."""
name = current_node.name
# Convert the placeholder into a quantized type.
output_node = node_def_pb2.NodeDef()
output_node.CopyFrom(current_node)
set_attr_dtype(output_node, "dtype", dtypes.quint8)
output_node.name += "_original_input"
self.add_output_graph_node(output_node)
# Add a dequantize to convert back to float.
dequantize_node = create_node("Dequantize", name, [
output_node.name, "quantized_input_min_value",
"quantized_input_max_value"
])
set_attr_dtype(dequantize_node, "T", dtypes.quint8)
set_attr_string(dequantize_node, "mode", b"MIN_FIRST")
self.add_output_graph_node(dequantize_node)
# For the descent over the graph to work, the dequantize node must be named
# current_node.name. However, for the feeding of the graph to work, the
# placeholder must have the name current_node.name; so record a final set
# of renames to apply after all processing has been done.
self.final_node_renames[output_node.name] = name
self.final_node_renames[dequantize_node.name] = name + "_dequantize"