當前位置: 首頁>>代碼示例>>Python>>正文


Python dtypes.int8方法代碼示例

本文整理匯總了Python中tensorflow.python.framework.dtypes.int8方法的典型用法代碼示例。如果您正苦於以下問題:Python dtypes.int8方法的具體用法?Python dtypes.int8怎麽用?Python dtypes.int8使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.framework.dtypes的用法示例。


在下文中一共展示了dtypes.int8方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _convert_string_dtype

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import int8 [as 別名]
def _convert_string_dtype(dtype):
  if dtype == 'float16':
    return dtypes_module.float16
  if dtype == 'float32':
    return dtypes_module.float32
  elif dtype == 'float64':
    return dtypes_module.float64
  elif dtype == 'int16':
    return dtypes_module.int16
  elif dtype == 'int32':
    return dtypes_module.int32
  elif dtype == 'int64':
    return dtypes_module.int64
  elif dtype == 'uint8':
    return dtypes_module.int8
  elif dtype == 'uint16':
    return dtypes_module.uint16
  else:
    raise ValueError('Unsupported dtype:', dtype) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:21,代碼來源:backend.py

示例2: testConvertBetweenInt16AndInt8

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import int8 [as 別名]
def testConvertBetweenInt16AndInt8(self):
    with self.test_session(use_gpu=True):
      # uint8, uint16
      self._convert([0, 255 * 256], dtypes.uint16, dtypes.uint8,
                    [0, 255])
      self._convert([0, 255], dtypes.uint8, dtypes.uint16,
                    [0, 255 * 256])
      # int8, uint16
      self._convert([0, 127 * 2 * 256], dtypes.uint16, dtypes.int8,
                    [0, 127])
      self._convert([0, 127], dtypes.int8, dtypes.uint16,
                    [0, 127 * 2 * 256])
      # int16, uint16
      self._convert([0, 255 * 256], dtypes.uint16, dtypes.int16,
                    [0, 255 * 128])
      self._convert([0, 255 * 128], dtypes.int16, dtypes.uint16,
                    [0, 255 * 256]) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:19,代碼來源:image_ops_test.py

示例3: truediv

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import int8 [as 別名]
def truediv(x, y, name=None):
  """Divides x / y elementwise (using Python 3 division operator semantics).

  NOTE: Prefer using the Tensor operator or tf.divide which obey Python
  division operator semantics.

  This function forces Python 3 division operator semantics where all integer
  arguments are cast to floating types first.   This op is generated by normal
  `x / y` division in Python 3 and in Python 2.7 with
  `from __future__ import division`.  If you want integer division that rounds
  down, use `x // y` or `tf.floordiv`.

  `x` and `y` must have the same numeric type.  If the inputs are floating
  point, the output will have the same type.  If the inputs are integral, the
  inputs are cast to `float32` for `int8` and `int16` and `float64` for `int32`
  and `int64` (matching the behavior of Numpy).

  Args:
    x: `Tensor` numerator of numeric type.
    y: `Tensor` denominator of numeric type.
    name: A name for the operation (optional).

  Returns:
    `x / y` evaluated in floating point.

  Raises:
    TypeError: If `x` and `y` have different dtypes.
  """
  return _truediv_python3(x, y, name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:31,代碼來源:math_ops.py

示例4: testNoOp

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import int8 [as 別名]
def testNoOp(self):
    img_shape = [1, 6, 4, 1]
    single_shape = [6, 4, 1]
    # This test is also conducted with int8, so 127 is the maximum
    # value that can be used.
    data = [127, 127, 64, 64,
            127, 127, 64, 64,
            64, 64, 127, 127,
            64, 64, 127, 127,
            50, 50, 100, 100,
            50, 50, 100, 100]
    target_height = 6
    target_width = 4

    for nptype in self.TYPES:
      img_np = np.array(data, dtype=nptype).reshape(img_shape)

      for opt in self.OPTIONS:
        if test.is_gpu_available() and self.shouldRunOnGPU(opt, nptype):
          with self.test_session(use_gpu=True) as sess:
            image = constant_op.constant(img_np, shape=img_shape)
            y = image_ops.resize_images(
                image, [target_height, target_width], opt)
            yshape = array_ops.shape(y)
            resized, newshape = sess.run([y, yshape])
            self.assertAllEqual(img_shape, newshape)
            self.assertAllClose(resized, img_np, atol=1e-5)

      # Resizing with a single image must leave the shape unchanged also.
      with self.test_session(use_gpu=True):
        img_single = img_np.reshape(single_shape)
        image = constant_op.constant(img_single, shape=single_shape)
        y = image_ops.resize_images(image, [target_height, target_width],
                                    self.OPTIONS[0])
        yshape = array_ops.shape(y)
        newshape = yshape.eval()
        self.assertAllEqual(single_shape, newshape) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:39,代碼來源:image_ops_test.py

示例5: testSumTensor

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import int8 [as 別名]
def testSumTensor(self):
    img_shape = [1, 6, 4, 1]
    # This test is also conducted with int8, so 127 is the maximum
    # value that can be used.
    data = [127, 127, 64, 64,
            127, 127, 64, 64,
            64, 64, 127, 127,
            64, 64, 127, 127,
            50, 50, 100, 100,
            50, 50, 100, 100]
    # Test size where width is specified as a tensor which is a sum
    # of two tensors.
    width_1 = constant_op.constant(1)
    width_2 = constant_op.constant(3)
    width = math_ops.add(width_1, width_2)
    height = constant_op.constant(6)

    img_np = np.array(data, dtype=np.uint8).reshape(img_shape)

    for opt in self.OPTIONS:
      with self.test_session() as sess:
        image = constant_op.constant(img_np, shape=img_shape)
        y = image_ops.resize_images(image, [height, width], opt)
        yshape = array_ops.shape(y)
        resized, newshape = sess.run([y, yshape])
        self.assertAllEqual(img_shape, newshape)
        self.assertAllClose(resized, img_np, atol=1e-5) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:29,代碼來源:image_ops_test.py

示例6: testFeedAndFetch

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import int8 [as 別名]
def testFeedAndFetch(self):
    with session.Session() as sess:
      for dtype in [dtypes.float16,
                    dtypes.float32,
                    dtypes.float64,
                    dtypes.int32,
                    dtypes.uint8,
                    dtypes.int16,
                    dtypes.int8,
                    dtypes.int64,
                    dtypes.bool,
                    dtypes.complex64,
                    dtypes.complex128]:
        for shape in [(32, 4, 128), (37,), (2, 0, 6), (0, 0, 0)]:
          np_dtype = dtype.as_numpy_dtype

          feed_t = array_ops.placeholder(dtype=dtype, shape=shape)
          out_t = array_ops.identity(feed_t)

          np_array = np.random.randint(-10, 10, shape)

          if dtype == dtypes.bool:
            np_array = np_array > 0
          elif dtype == dtypes.complex64:
            np_array = np.sqrt(np_array.astype(np_dtype))
          elif dtype == dtypes.complex64:
            np_array = np.sqrt(np_array.astype(np_dtype))
          else:
            np_array = np_array.astype(np_dtype)

          self.assertAllEqual(np_array,
                              sess.run(out_t, feed_dict={feed_t: np_array}))
          # Check that we can also get the feed back.
          self.assertAllEqual(np_array,
                              sess.run(feed_t, feed_dict={feed_t: np_array}))
          # Also check that we can get both back.
          out_v, feed_v = sess.run([out_t, feed_t],
                                   feed_dict={feed_t: np_array})
          self.assertAllEqual(np_array, out_v)
          self.assertAllEqual(np_array, feed_v) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:42,代碼來源:session_test.py

示例7: _convert_string_dtype

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import int8 [as 別名]
def _convert_string_dtype(dtype):
  """Get the type from a string.

  Arguments:
      dtype: A string representation of a type.

  Returns:
      The type requested.

  Raises:
      ValueError: if `dtype` is not supported.
  """
  if dtype == 'float16':
    return dtypes_module.float16
  if dtype == 'float32':
    return dtypes_module.float32
  elif dtype == 'float64':
    return dtypes_module.float64
  elif dtype == 'int16':
    return dtypes_module.int16
  elif dtype == 'int32':
    return dtypes_module.int32
  elif dtype == 'int64':
    return dtypes_module.int64
  elif dtype == 'uint8':
    return dtypes_module.int8
  elif dtype == 'uint16':
    return dtypes_module.uint16
  else:
    raise ValueError('Unsupported dtype:', dtype) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:32,代碼來源:backend.py

示例8: _is_known_signed_by_dtype

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import int8 [as 別名]
def _is_known_signed_by_dtype(dt):
  """Helper returning True if dtype is known to be signed."""
  return {
      dtypes.float16: True,
      dtypes.float32: True,
      dtypes.float64: True,
      dtypes.int8: True,
      dtypes.int16: True,
      dtypes.int32: True,
      dtypes.int64: True,
  }.get(dt.base_dtype, False) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:13,代碼來源:util.py

示例9: cumsum

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import int8 [as 別名]
def cumsum(x, axis=0, exclusive=False, reverse=False, name=None):
  """Compute the cumulative sum of the tensor `x` along `axis`.

  By default, this op performs an inclusive cumsum, which means that the first
  element of the input is identical to the first element of the output:
  ```prettyprint
  tf.cumsum([a, b, c]) ==> [a, a + b, a + b + c]
  ```

  By setting the `exclusive` kwarg to `True`, an exclusive cumsum is performed
  instead:
  ```prettyprint
  tf.cumsum([a, b, c], exclusive=True) ==> [0, a, a + b]
  ```

  By setting the `reverse` kwarg to `True`, the cumsum is performed in the
  opposite direction:
  ```prettyprint
  tf.cumsum([a, b, c], reverse=True) ==> [a + b + c, b + c, c]
  ```
  This is more efficient than using separate `tf.reverse` ops.

  The `reverse` and `exclusive` kwargs can also be combined:
  ```prettyprint
  tf.cumsum([a, b, c], exclusive=True, reverse=True) ==> [b + c, c, 0]
  ```

  Args:
    x: A `Tensor`. Must be one of the following types: `float32`, `float64`,
       `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`,
       `complex128`, `qint8`, `quint8`, `qint32`, `half`.
    axis: A `Tensor` of type `int32` (default: 0).
    exclusive: If `True`, perform exclusive cumsum.
    reverse: A `bool` (default: False).
    name: A name for the operation (optional).

  Returns:
    A `Tensor`. Has the same type as `x`.
  """
  with ops.name_scope(name, "Cumsum", [x]) as name:
    x = ops.convert_to_tensor(x, name="x")
    return gen_math_ops.cumsum(
        x, axis, exclusive=exclusive, reverse=reverse, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:45,代碼來源:math_ops.py

示例10: cumprod

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import int8 [as 別名]
def cumprod(x, axis=0, exclusive=False, reverse=False, name=None):
  """Compute the cumulative product of the tensor `x` along `axis`.

  By default, this op performs an inclusive cumprod, which means that the
  first
  element of the input is identical to the first element of the output:
  ```prettyprint
  tf.cumprod([a, b, c]) ==> [a, a * b, a * b * c]
  ```

  By setting the `exclusive` kwarg to `True`, an exclusive cumprod is
  performed
  instead:
  ```prettyprint
  tf.cumprod([a, b, c], exclusive=True) ==> [1, a, a * b]
  ```

  By setting the `reverse` kwarg to `True`, the cumprod is performed in the
  opposite direction:
  ```prettyprint
  tf.cumprod([a, b, c], reverse=True) ==> [a * b * c, b * c, c]
  ```
  This is more efficient than using separate `tf.reverse` ops.

  The `reverse` and `exclusive` kwargs can also be combined:
  ```prettyprint
  tf.cumprod([a, b, c], exclusive=True, reverse=True) ==> [b * c, c, 1]
  ```

  Args:
    x: A `Tensor`. Must be one of the following types: `float32`, `float64`,
       `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`,
       `complex128`, `qint8`, `quint8`, `qint32`, `half`.
    axis: A `Tensor` of type `int32` (default: 0).
    exclusive: If `True`, perform exclusive cumprod.
    reverse: A `bool` (default: False).
    name: A name for the operation (optional).

  Returns:
    A `Tensor`. Has the same type as `x`.
  """
  with ops.name_scope(name, "Cumprod", [x]) as name:
    x = ops.convert_to_tensor(x, name="x")
    return gen_math_ops.cumprod(
        x, axis, exclusive=exclusive, reverse=reverse, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:47,代碼來源:math_ops.py

示例11: cumsum

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import int8 [as 別名]
def cumsum(x, axis=0, exclusive=False, reverse=False, name=None):
  """Compute the cumulative sum of the tensor `x` along `axis`.

  By default, this op performs an inclusive cumsum, which means that the first
  element of the input is identical to the first element of the output:
  ```prettyprint
  tf.cumsum([a, b, c]) ==> [a, a + b, a + b + c]
  ```

  By setting the `exclusive` kwarg to `True`, an exclusive cumsum is performed
  instead:
  ```prettyprint
  tf.cumsum([a, b, c], exclusive=True) ==> [0, a, a + b]
  ```

  By setting the `reverse` kwarg to `True`, the cumsum is performed in the
  opposite direction:
  ```prettyprint
  tf.cumsum([a, b, c], reverse=True) ==> [a + b + c, b + c, c]
  ```
  This is more efficient than using separate `tf.reverse` ops.

  The `reverse` and `exclusive` kwargs can also be combined:
  ```prettyprint
  tf.cumsum([a, b, c], exclusive=True, reverse=True) ==> [b + c, c, 0]
  ```

  Args:
    x: A `Tensor`. Must be one of the following types: `float32`, `float64`,
       `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`,
       `complex128`, `qint8`, `quint8`, `qint32`, `half`.
       axis: A `Tensor` of type `int32` (default: 0).
       reverse: A `bool` (default: False).
       name: A name for the operation (optional).

  Returns:
    A `Tensor`. Has the same type as `x`.
  """
  with ops.name_scope(name, "Cumsum", [x]) as name:
    x = ops.convert_to_tensor(x, name="x")
    return gen_math_ops.cumsum(
        x, axis, exclusive=exclusive, reverse=reverse, name=name) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:44,代碼來源:math_ops.py

示例12: cumprod

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import int8 [as 別名]
def cumprod(x, axis=0, exclusive=False, reverse=False, name=None):
  """Compute the cumulative product of the tensor `x` along `axis`.

  By default, this op performs an inclusive cumprod, which means that the
  first
  element of the input is identical to the first element of the output:
  ```prettyprint
  tf.cumprod([a, b, c]) ==> [a, a * b, a * b * c]
  ```

  By setting the `exclusive` kwarg to `True`, an exclusive cumprod is
  performed
  instead:
  ```prettyprint
  tf.cumprod([a, b, c], exclusive=True) ==> [1, a, a * b]
  ```

  By setting the `reverse` kwarg to `True`, the cumprod is performed in the
  opposite direction:
  ```prettyprint
  tf.cumprod([a, b, c], reverse=True) ==> [a * b * c, b * c, c]
  ```
  This is more efficient than using separate `tf.reverse` ops.

  The `reverse` and `exclusive` kwargs can also be combined:
  ```prettyprint
  tf.cumprod([a, b, c], exclusive=True, reverse=True) ==> [b * c, c, 1]
  ```

  Args:
    x: A `Tensor`. Must be one of the following types: `float32`, `float64`,
       `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`,
       `complex128`, `qint8`, `quint8`, `qint32`, `half`.
    axis: A `Tensor` of type `int32` (default: 0).
    reverse: A `bool` (default: False).
    name: A name for the operation (optional).

  Returns:
    A `Tensor`. Has the same type as `x`.
  """
  with ops.name_scope(name, "Cumprod", [x]) as name:
    x = ops.convert_to_tensor(x, name="x")
    return gen_math_ops.cumprod(
        x, axis, exclusive=exclusive, reverse=reverse, name=name) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:46,代碼來源:math_ops.py

示例13: truediv

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import int8 [as 別名]
def truediv(x, y, name=None):
  """Divides x / y elementwise, always producing floating point results.

  The same as `tf.div` for floating point arguments, but casts integer arguments
  to floating point before dividing so that the result is always floating point.
  This op is generated by normal `x / y` division in Python 3 and in Python 2.7
  with `from __future__ import division`.  If you want integer division that
  rounds down, use `x // y` or `tf.floordiv`.

  `x` and `y` must have the same numeric type.  If the inputs are floating
  point, the output will have the same type.  If the inputs are integral, the
  inputs are cast to `float32` for `int8` and `int16` and `float64` for `int32`
  and `int64` (matching the behavior of Numpy).

  Args:
    x: `Tensor` numerator of numeric type.
    y: `Tensor` denominator of numeric type.
    name: A name for the operation (optional).

  Returns:
    `x / y` evaluated in floating point.

  Raises:
    TypeError: If `x` and `y` have different dtypes.
  """
  with ops.name_scope(name, "truediv", [x, y]) as name:
    x = ops.convert_to_tensor(x, name="x")
    y = ops.convert_to_tensor(y, name="y")
    x_dtype = x.dtype.base_dtype
    y_dtype = y.dtype.base_dtype
    if x_dtype != y_dtype:
      raise TypeError("x and y must have the same dtype, got %r != %r" %
                      (x_dtype, y_dtype))
    try:
      dtype = _TRUEDIV_TABLE[x_dtype]
    except KeyError:
      raise TypeError("Invalid dtype %r in __truediv__" % x_dtype)
    if dtype is not None:
      x = cast(x, dtype)
      y = cast(y, dtype)
    return gen_math_ops.div(x, y, name=name)


# TODO(aselle): Deprecate this once all internal functionality uses
# tf.truncatediv 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:47,代碼來源:math_ops.py

示例14: cumsum

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import int8 [as 別名]
def cumsum(x, axis=0, exclusive=False, reverse=False, name=None):
  """Compute the cumulative sum of the tensor `x` along `axis`.

  By default, this op performs an inclusive cumsum, which means that the first
  element of the input is identical to the first element of the output:

  ```python
  tf.cumsum([a, b, c])  # [a, a + b, a + b + c]
  ```

  By setting the `exclusive` kwarg to `True`, an exclusive cumsum is performed
  instead:

  ```python
  tf.cumsum([a, b, c], exclusive=True)  # [0, a, a + b]
  ```

  By setting the `reverse` kwarg to `True`, the cumsum is performed in the
  opposite direction:

  ```python
  tf.cumsum([a, b, c], reverse=True)  # [a + b + c, b + c, c]
  ```

  This is more efficient than using separate `tf.reverse` ops.

  The `reverse` and `exclusive` kwargs can also be combined:

  ```python
  tf.cumsum([a, b, c], exclusive=True, reverse=True)  # [b + c, c, 0]
  ```

  Args:
    x: A `Tensor`. Must be one of the following types: `float32`, `float64`,
       `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`,
       `complex128`, `qint8`, `quint8`, `qint32`, `half`.
    axis: A `Tensor` of type `int32` (default: 0). Must be in the range
      `[-rank(x), rank(x))`.
    exclusive: If `True`, perform exclusive cumsum.
    reverse: A `bool` (default: False).
    name: A name for the operation (optional).

  Returns:
    A `Tensor`. Has the same type as `x`.
  """
  with ops.name_scope(name, "Cumsum", [x]) as name:
    x = ops.convert_to_tensor(x, name="x")
    return gen_math_ops.cumsum(
        x, axis, exclusive=exclusive, reverse=reverse, name=name) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:51,代碼來源:math_ops.py

示例15: cumprod

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import int8 [as 別名]
def cumprod(x, axis=0, exclusive=False, reverse=False, name=None):
  """Compute the cumulative product of the tensor `x` along `axis`.

  By default, this op performs an inclusive cumprod, which means that the
  first element of the input is identical to the first element of the output:

  ```python
  tf.cumprod([a, b, c])  # [a, a * b, a * b * c]
  ```

  By setting the `exclusive` kwarg to `True`, an exclusive cumprod is
  performed
  instead:

  ```python
  tf.cumprod([a, b, c], exclusive=True)  # [1, a, a * b]
  ```

  By setting the `reverse` kwarg to `True`, the cumprod is performed in the
  opposite direction:

  ```python
  tf.cumprod([a, b, c], reverse=True)  # [a * b * c, b * c, c]
  ```

  This is more efficient than using separate `tf.reverse` ops.
  The `reverse` and `exclusive` kwargs can also be combined:

  ```python
  tf.cumprod([a, b, c], exclusive=True, reverse=True)  # [b * c, c, 1]
  ```

  Args:
    x: A `Tensor`. Must be one of the following types: `float32`, `float64`,
       `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`,
       `complex128`, `qint8`, `quint8`, `qint32`, `half`.
    axis: A `Tensor` of type `int32` (default: 0). Must be in the range
      `[-rank(x), rank(x))`.
    exclusive: If `True`, perform exclusive cumprod.
    reverse: A `bool` (default: False).
    name: A name for the operation (optional).

  Returns:
    A `Tensor`. Has the same type as `x`.
  """
  with ops.name_scope(name, "Cumprod", [x]) as name:
    x = ops.convert_to_tensor(x, name="x")
    return gen_math_ops.cumprod(
        x, axis, exclusive=exclusive, reverse=reverse, name=name) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:51,代碼來源:math_ops.py


注:本文中的tensorflow.python.framework.dtypes.int8方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。