本文整理匯總了Python中tensorflow.python.framework.dtypes.float64方法的典型用法代碼示例。如果您正苦於以下問題:Python dtypes.float64方法的具體用法?Python dtypes.float64怎麽用?Python dtypes.float64使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.framework.dtypes
的用法示例。
在下文中一共展示了dtypes.float64方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _safe_scalar_div
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def _safe_scalar_div(numerator, denominator, name):
"""Divides two values, returning 0 if the denominator is 0.
Args:
numerator: A scalar `float64` `Tensor`.
denominator: A scalar `float64` `Tensor`.
name: Name for the returned op.
Returns:
0 if `denominator` == 0, else `numerator` / `denominator`
"""
numerator.get_shape().with_rank_at_most(1)
denominator.get_shape().with_rank_at_most(1)
return control_flow_ops.cond(
math_ops.equal(
array_ops.constant(0.0, dtype=dtypes.float64), denominator),
lambda: array_ops.constant(0.0, dtype=dtypes.float64),
lambda: math_ops.div(numerator, denominator),
name=name)
示例2: _neg
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def _neg(x, name=None):
"""Computes numerical negative value element-wise.
I.e., \\(y = -x\\).
Args:
x: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
`float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
name: A name for the operation (optional).
Returns:
A `Tensor` or `SparseTensor`, respectively. Has the same type as `x`.
"""
return negative(x, name)
# pylint: enable=g-docstring-has-escape
示例3: square
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def square(x, name=None):
r"""Computes square of x element-wise.
I.e., \\(y = x * x = x^2\\).
Args:
x: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
`float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
name: A name for the operation (optional).
Returns:
A `Tensor` or `SparseTensor`. Has the same type as `x`.
"""
with ops.name_scope(name, "Square", [x]) as name:
if isinstance(x, sparse_tensor.SparseTensor):
x_square = gen_math_ops.square(x.values, name=name)
return sparse_tensor.SparseTensor(
indices=x.indices, values=x_square, dense_shape=x.dense_shape)
else:
return gen_math_ops.square(x, name=name)
示例4: erf
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def erf(x, name=None):
"""Computes the Gauss error function of `x` element-wise.
Args:
x: A `Tensor` of `SparseTensor`. Must be one of the following types: `half`,
`float32`, `float64`.
name: A name for the operation (optional).
Returns:
A `Tensor` or `SparseTensor`, respectively. Has the same type as `x`.
"""
with ops.name_scope(name, "Erf", [x]) as name:
if isinstance(x, sparse_tensor.SparseTensor):
x_erf = gen_math_ops.erf(x.values, name=name)
return sparse_tensor.SparseTensor(
indices=x.indices, values=x_erf, dense_shape=x.dense_shape)
else:
return gen_math_ops.erf(x, name=name)
示例5: sigmoid
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def sigmoid(x, name=None):
"""Computes sigmoid of `x` element-wise.
Specifically, `y = 1 / (1 + exp(-x))`.
Args:
x: A Tensor with type `float32`, `float64`, `int32`, `complex64`, `int64`,
or `qint32`.
name: A name for the operation (optional).
Returns:
A Tensor with the same type as `x` if `x.dtype != qint32`
otherwise the return type is `quint8`.
@compatibility(numpy)
Equivalent to np.scipy.special.expit
@end_compatibility
"""
with ops.name_scope(name, "Sigmoid", [x]) as name:
x = ops.convert_to_tensor(x, name="x")
return gen_math_ops._sigmoid(x, name=name)
示例6: log_sigmoid
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def log_sigmoid(x, name=None):
"""Computes log sigmoid of `x` element-wise.
Specifically, `y = log(1 / (1 + exp(-x)))`. For numerical stability,
we use `y = -tf.nn.softplus(-x)`.
Args:
x: A Tensor with type `float32` or `float64`.
name: A name for the operation (optional).
Returns:
A Tensor with the same type as `x`.
"""
with ops.name_scope(name, "LogSigmoid", [x]) as name:
x = ops.convert_to_tensor(x, name="x")
return gen_math_ops._neg(gen_nn_ops.softplus(-x), name=name)
示例7: _ResizeBilinearGrad
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def _ResizeBilinearGrad(op, grad):
"""The derivatives for bilinear resizing.
Args:
op: The ResizeBilinear op.
grad: The tensor representing the gradient w.r.t. the output.
Returns:
The gradients w.r.t. the input.
"""
allowed_types = [dtypes.float32, dtypes.float64]
grad0 = None
if op.inputs[0].dtype in allowed_types:
# pylint: disable=protected-access
grad0 = gen_image_ops._resize_bilinear_grad(
grad,
op.inputs[0],
align_corners=op.get_attr("align_corners"))
# pylint: enable=protected-access
return [grad0, None]
示例8: add_check_numerics_ops
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def add_check_numerics_ops():
"""Connect a `check_numerics` to every floating point tensor.
`check_numerics` operations themselves are added for each `half`, `float`,
or `double` tensor in the graph. For all ops in the graph, the
`check_numerics` op for all of its (`half`, `float`, or `double`) inputs
is guaranteed to run before the `check_numerics` op on any of its outputs.
Returns:
A `group` op depending on all `check_numerics` ops added.
"""
check_op = []
# This code relies on the ordering of ops in get_operations().
# The producer of a tensor always comes before that tensor's consumer in
# this list. This is true because get_operations() returns ops in the order
# added, and an op can only be added after its inputs are added.
for op in ops.get_default_graph().get_operations():
for output in op.outputs:
if output.dtype in [dtypes.float16, dtypes.float32, dtypes.float64]:
message = op.name + ":" + str(output.value_index)
with ops.control_dependencies(check_op):
check_op = [array_ops.check_numerics(output, message=message)]
return control_flow_ops.group(*check_op)
示例9: set_floatx
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def set_floatx(value):
"""Sets the default float type.
Arguments:
value: String; 'float16', 'float32', or 'float64'.
Example:
```python
>>> from keras import backend as K
>>> K.floatx()
'float32'
>>> K.set_floatx('float16')
>>> K.floatx()
'float16'
```
Raises:
ValueError: In case of invalid value.
"""
global _FLOATX
if value not in {'float16', 'float32', 'float64'}:
raise ValueError('Unknown floatx type: ' + str(value))
_FLOATX = str(value)
示例10: cast_to_floatx
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def cast_to_floatx(x):
"""Cast a Numpy array to the default Keras float type.
Arguments:
x: Numpy array.
Returns:
The same Numpy array, cast to its new type.
Example:
```python
>>> from keras import backend as K
>>> K.floatx()
'float32'
>>> arr = numpy.array([1.0, 2.0], dtype='float64')
>>> arr.dtype
dtype('float64')
>>> new_arr = K.cast_to_floatx(arr)
>>> new_arr
array([ 1., 2.], dtype=float32)
>>> new_arr.dtype
dtype('float32')
```
"""
return np.asarray(x, dtype=_FLOATX)
示例11: _convert_string_dtype
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def _convert_string_dtype(dtype):
if dtype == 'float16':
return dtypes_module.float16
if dtype == 'float32':
return dtypes_module.float32
elif dtype == 'float64':
return dtypes_module.float64
elif dtype == 'int16':
return dtypes_module.int16
elif dtype == 'int32':
return dtypes_module.int32
elif dtype == 'int64':
return dtypes_module.int64
elif dtype == 'uint8':
return dtypes_module.int8
elif dtype == 'uint16':
return dtypes_module.uint16
else:
raise ValueError('Unsupported dtype:', dtype)
示例12: _check_matrix
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def _check_matrix(self, matrix):
"""Static check of the `matrix` argument."""
allowed_dtypes = [
dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128]
matrix = ops.convert_to_tensor(matrix, name="matrix")
dtype = matrix.dtype
if dtype not in allowed_dtypes:
raise TypeError(
"Argument matrix must have dtype in %s. Found: %s"
% (allowed_dtypes, dtype))
if matrix.get_shape().ndims is not None and matrix.get_shape().ndims < 2:
raise ValueError(
"Argument matrix must have at least 2 dimensions. Found: %s"
% matrix)
示例13: negative
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def negative(x, name=None):
"""Computes numerical negative value element-wise.
I.e., \\(y = -x\\).
Args:
x: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
`float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
name: A name for the operation (optional).
Returns:
A `Tensor` or `SparseTensor`, respectively. Has the same type as `x`.
"""
with ops.name_scope(name, "Neg", [x]) as name:
if isinstance(x, sparse_tensor.SparseTensor):
x_neg = gen_math_ops._neg(x.values, name=name)
return sparse_tensor.SparseTensor(
indices=x.indices, values=x_neg, dense_shape=x.dense_shape)
else:
return gen_math_ops._neg(x, name=name)
# pylint: enable=g-docstring-has-escape
# pylint: disable=g-docstring-has-escape
示例14: sign
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def sign(x, name=None):
"""Returns an element-wise indication of the sign of a number.
`y = sign(x) = -1` if `x < 0`; 0 if `x == 0`; 1 if `x > 0`.
For complex numbers, `y = sign(x) = x / |x|` if `x != 0`, otherwise `y = 0`.
Args:
x: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
`float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
name: A name for the operation (optional).
Returns:
A `Tensor` or `SparseTensor`, respectively. Has the same type as `x`.
"""
with ops.name_scope(name, "Sign", [x]) as name:
if isinstance(x, sparse_tensor.SparseTensor):
x_sign = gen_math_ops.sign(x.values, name=name)
return sparse_tensor.SparseTensor(
indices=x.indices, values=x_sign, dense_shape=x.dense_shape)
else:
return gen_math_ops.sign(x, name=name)
示例15: square
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def square(x, name=None):
"""Computes square of x element-wise.
I.e., \\(y = x * x = x^2\\).
Args:
x: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
`float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
name: A name for the operation (optional).
Returns:
A `Tensor` or `SparseTensor`. Has the same type as `x`.
"""
with ops.name_scope(name, "Square", [x]) as name:
if isinstance(x, sparse_tensor.SparseTensor):
x_square = gen_math_ops.square(x.values, name=name)
return sparse_tensor.SparseTensor(
indices=x.indices, values=x_square, dense_shape=x.dense_shape)
else:
return gen_math_ops.square(x, name=name)