當前位置: 首頁>>代碼示例>>Python>>正文


Python dtypes.float64方法代碼示例

本文整理匯總了Python中tensorflow.python.framework.dtypes.float64方法的典型用法代碼示例。如果您正苦於以下問題:Python dtypes.float64方法的具體用法?Python dtypes.float64怎麽用?Python dtypes.float64使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.framework.dtypes的用法示例。


在下文中一共展示了dtypes.float64方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _safe_scalar_div

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def _safe_scalar_div(numerator, denominator, name):
  """Divides two values, returning 0 if the denominator is 0.

  Args:
    numerator: A scalar `float64` `Tensor`.
    denominator: A scalar `float64` `Tensor`.
    name: Name for the returned op.

  Returns:
    0 if `denominator` == 0, else `numerator` / `denominator`
  """
  numerator.get_shape().with_rank_at_most(1)
  denominator.get_shape().with_rank_at_most(1)
  return control_flow_ops.cond(
      math_ops.equal(
          array_ops.constant(0.0, dtype=dtypes.float64), denominator),
      lambda: array_ops.constant(0.0, dtype=dtypes.float64),
      lambda: math_ops.div(numerator, denominator),
      name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:21,代碼來源:metrics_impl.py

示例2: _neg

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def _neg(x, name=None):
  """Computes numerical negative value element-wise.

  I.e., \\(y = -x\\).

  Args:
    x: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
      `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` or `SparseTensor`, respectively. Has the same type as `x`.
  """
  return negative(x, name)


# pylint: enable=g-docstring-has-escape 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:math_ops.py

示例3: square

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def square(x, name=None):
  r"""Computes square of x element-wise.

  I.e., \\(y = x * x = x^2\\).

  Args:
    x: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
      `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` or `SparseTensor`. Has the same type as `x`.
  """
  with ops.name_scope(name, "Square", [x]) as name:
    if isinstance(x, sparse_tensor.SparseTensor):
      x_square = gen_math_ops.square(x.values, name=name)
      return sparse_tensor.SparseTensor(
          indices=x.indices, values=x_square, dense_shape=x.dense_shape)
    else:
      return gen_math_ops.square(x, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:22,代碼來源:math_ops.py

示例4: erf

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def erf(x, name=None):
  """Computes the Gauss error function of `x` element-wise.

  Args:
    x: A `Tensor` of `SparseTensor`. Must be one of the following types: `half`,
      `float32`, `float64`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` or `SparseTensor`, respectively. Has the same type as `x`.
  """
  with ops.name_scope(name, "Erf", [x]) as name:
    if isinstance(x, sparse_tensor.SparseTensor):
      x_erf = gen_math_ops.erf(x.values, name=name)
      return sparse_tensor.SparseTensor(
          indices=x.indices, values=x_erf, dense_shape=x.dense_shape)
    else:
      return gen_math_ops.erf(x, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:math_ops.py

示例5: sigmoid

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def sigmoid(x, name=None):
  """Computes sigmoid of `x` element-wise.

  Specifically, `y = 1 / (1 + exp(-x))`.

  Args:
    x: A Tensor with type `float32`, `float64`, `int32`, `complex64`, `int64`,
      or `qint32`.
    name: A name for the operation (optional).

  Returns:
    A Tensor with the same type as `x` if `x.dtype != qint32`
      otherwise the return type is `quint8`.

  @compatibility(numpy)
  Equivalent to np.scipy.special.expit
  @end_compatibility
  """
  with ops.name_scope(name, "Sigmoid", [x]) as name:
    x = ops.convert_to_tensor(x, name="x")
    return gen_math_ops._sigmoid(x, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:math_ops.py

示例6: log_sigmoid

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def log_sigmoid(x, name=None):
  """Computes log sigmoid of `x` element-wise.

  Specifically, `y = log(1 / (1 + exp(-x)))`.  For numerical stability,
  we use `y = -tf.nn.softplus(-x)`.

  Args:
    x: A Tensor with type `float32` or `float64`.
    name: A name for the operation (optional).

  Returns:
    A Tensor with the same type as `x`.
  """
  with ops.name_scope(name, "LogSigmoid", [x]) as name:
    x = ops.convert_to_tensor(x, name="x")
    return gen_math_ops._neg(gen_nn_ops.softplus(-x), name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:math_ops.py

示例7: _ResizeBilinearGrad

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def _ResizeBilinearGrad(op, grad):
  """The derivatives for bilinear resizing.

  Args:
    op: The ResizeBilinear op.
    grad: The tensor representing the gradient w.r.t. the output.

  Returns:
    The gradients w.r.t. the input.
  """
  allowed_types = [dtypes.float32, dtypes.float64]
  grad0 = None
  if op.inputs[0].dtype in allowed_types:
    # pylint: disable=protected-access
    grad0 = gen_image_ops._resize_bilinear_grad(
        grad,
        op.inputs[0],
        align_corners=op.get_attr("align_corners"))
    # pylint: enable=protected-access
  return [grad0, None] 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:22,代碼來源:image_grad.py

示例8: add_check_numerics_ops

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def add_check_numerics_ops():
  """Connect a `check_numerics` to every floating point tensor.

  `check_numerics` operations themselves are added for each `half`, `float`,
  or `double` tensor in the graph. For all ops in the graph, the
  `check_numerics` op for all of its (`half`, `float`, or `double`) inputs
  is guaranteed to run before the `check_numerics` op on any of its outputs.

  Returns:
    A `group` op depending on all `check_numerics` ops added.
  """
  check_op = []
  # This code relies on the ordering of ops in get_operations().
  # The producer of a tensor always comes before that tensor's consumer in
  # this list. This is true because get_operations() returns ops in the order
  # added, and an op can only be added after its inputs are added.
  for op in ops.get_default_graph().get_operations():
    for output in op.outputs:
      if output.dtype in [dtypes.float16, dtypes.float32, dtypes.float64]:
        message = op.name + ":" + str(output.value_index)
        with ops.control_dependencies(check_op):
          check_op = [array_ops.check_numerics(output, message=message)]
  return control_flow_ops.group(*check_op) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:numerics.py

示例9: set_floatx

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def set_floatx(value):
  """Sets the default float type.

  Arguments:
      value: String; 'float16', 'float32', or 'float64'.

  Example:
  ```python
      >>> from keras import backend as K
      >>> K.floatx()
      'float32'
      >>> K.set_floatx('float16')
      >>> K.floatx()
      'float16'
  ```

  Raises:
      ValueError: In case of invalid value.
  """
  global _FLOATX
  if value not in {'float16', 'float32', 'float64'}:
    raise ValueError('Unknown floatx type: ' + str(value))
  _FLOATX = str(value) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:backend.py

示例10: cast_to_floatx

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def cast_to_floatx(x):
  """Cast a Numpy array to the default Keras float type.

  Arguments:
      x: Numpy array.

  Returns:
      The same Numpy array, cast to its new type.

  Example:
  ```python
      >>> from keras import backend as K
      >>> K.floatx()
      'float32'
      >>> arr = numpy.array([1.0, 2.0], dtype='float64')
      >>> arr.dtype
      dtype('float64')
      >>> new_arr = K.cast_to_floatx(arr)
      >>> new_arr
      array([ 1.,  2.], dtype=float32)
      >>> new_arr.dtype
      dtype('float32')
  ```
  """
  return np.asarray(x, dtype=_FLOATX) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:27,代碼來源:backend.py

示例11: _convert_string_dtype

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def _convert_string_dtype(dtype):
  if dtype == 'float16':
    return dtypes_module.float16
  if dtype == 'float32':
    return dtypes_module.float32
  elif dtype == 'float64':
    return dtypes_module.float64
  elif dtype == 'int16':
    return dtypes_module.int16
  elif dtype == 'int32':
    return dtypes_module.int32
  elif dtype == 'int64':
    return dtypes_module.int64
  elif dtype == 'uint8':
    return dtypes_module.int8
  elif dtype == 'uint16':
    return dtypes_module.uint16
  else:
    raise ValueError('Unsupported dtype:', dtype) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:21,代碼來源:backend.py

示例12: _check_matrix

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def _check_matrix(self, matrix):
    """Static check of the `matrix` argument."""
    allowed_dtypes = [
        dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128]

    matrix = ops.convert_to_tensor(matrix, name="matrix")

    dtype = matrix.dtype
    if dtype not in allowed_dtypes:
      raise TypeError(
          "Argument matrix must have dtype in %s.  Found: %s"
          % (allowed_dtypes, dtype))

    if matrix.get_shape().ndims is not None and matrix.get_shape().ndims < 2:
      raise ValueError(
          "Argument matrix must have at least 2 dimensions.  Found: %s"
          % matrix) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:linear_operator_full_matrix.py

示例13: negative

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def negative(x, name=None):
  """Computes numerical negative value element-wise.

  I.e., \\(y = -x\\).

  Args:
    x: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
      `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` or `SparseTensor`, respectively. Has the same type as `x`.
  """
  with ops.name_scope(name, "Neg", [x]) as name:
    if isinstance(x, sparse_tensor.SparseTensor):
      x_neg = gen_math_ops._neg(x.values, name=name)
      return sparse_tensor.SparseTensor(
          indices=x.indices, values=x_neg, dense_shape=x.dense_shape)
    else:
      return gen_math_ops._neg(x, name=name)
# pylint: enable=g-docstring-has-escape


# pylint: disable=g-docstring-has-escape 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:26,代碼來源:math_ops.py

示例14: sign

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def sign(x, name=None):
  """Returns an element-wise indication of the sign of a number.

  `y = sign(x) = -1` if `x < 0`; 0 if `x == 0`; 1 if `x > 0`.

  For complex numbers, `y = sign(x) = x / |x|` if `x != 0`, otherwise `y = 0`.

  Args:
    x: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
      `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` or `SparseTensor`, respectively. Has the same type as `x`.
  """
  with ops.name_scope(name, "Sign", [x]) as name:
    if isinstance(x, sparse_tensor.SparseTensor):
      x_sign = gen_math_ops.sign(x.values, name=name)
      return sparse_tensor.SparseTensor(
          indices=x.indices, values=x_sign, dense_shape=x.dense_shape)
    else:
      return gen_math_ops.sign(x, name=name) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:24,代碼來源:math_ops.py

示例15: square

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import float64 [as 別名]
def square(x, name=None):
  """Computes square of x element-wise.

  I.e., \\(y = x * x = x^2\\).

  Args:
    x: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
      `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` or `SparseTensor`. Has the same type as `x`.
  """
  with ops.name_scope(name, "Square", [x]) as name:
    if isinstance(x, sparse_tensor.SparseTensor):
      x_square = gen_math_ops.square(x.values, name=name)
      return sparse_tensor.SparseTensor(
          indices=x.indices, values=x_square, dense_shape=x.dense_shape)
    else:
      return gen_math_ops.square(x, name=name) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:22,代碼來源:math_ops.py


注:本文中的tensorflow.python.framework.dtypes.float64方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。