本文整理匯總了Python中tensorflow.python.framework.dtypes.complex128方法的典型用法代碼示例。如果您正苦於以下問題:Python dtypes.complex128方法的具體用法?Python dtypes.complex128怎麽用?Python dtypes.complex128使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.framework.dtypes
的用法示例。
在下文中一共展示了dtypes.complex128方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _neg
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import complex128 [as 別名]
def _neg(x, name=None):
"""Computes numerical negative value element-wise.
I.e., \\(y = -x\\).
Args:
x: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
`float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
name: A name for the operation (optional).
Returns:
A `Tensor` or `SparseTensor`, respectively. Has the same type as `x`.
"""
return negative(x, name)
# pylint: enable=g-docstring-has-escape
示例2: sqrt
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import complex128 [as 別名]
def sqrt(x, name=None):
r"""Computes square root of x element-wise.
I.e., \\(y = \sqrt{x} = x^{1/2}\\).
Args:
x: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
`float32`, `float64`, `complex64`, `complex128`.
name: A name for the operation (optional).
Returns:
A `Tensor` or `SparseTensor`, respectively. Has the same type as `x`.
"""
with ops.name_scope(name, "Sqrt", [x]) as name:
if isinstance(x, sparse_tensor.SparseTensor):
x_sqrt = gen_math_ops.sqrt(x.values, name=name)
return sparse_tensor.SparseTensor(
indices=x.indices, values=x_sqrt, dense_shape=x.dense_shape)
else:
return gen_math_ops.sqrt(x, name=name)
示例3: _check_matrix
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import complex128 [as 別名]
def _check_matrix(self, matrix):
"""Static check of the `matrix` argument."""
allowed_dtypes = [
dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128]
matrix = ops.convert_to_tensor(matrix, name="matrix")
dtype = matrix.dtype
if dtype not in allowed_dtypes:
raise TypeError(
"Argument matrix must have dtype in %s. Found: %s"
% (allowed_dtypes, dtype))
if matrix.get_shape().ndims is not None and matrix.get_shape().ndims < 2:
raise ValueError(
"Argument matrix must have at least 2 dimensions. Found: %s"
% matrix)
示例4: negative
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import complex128 [as 別名]
def negative(x, name=None):
"""Computes numerical negative value element-wise.
I.e., \\(y = -x\\).
Args:
x: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
`float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
name: A name for the operation (optional).
Returns:
A `Tensor` or `SparseTensor`, respectively. Has the same type as `x`.
"""
with ops.name_scope(name, "Neg", [x]) as name:
if isinstance(x, sparse_tensor.SparseTensor):
x_neg = gen_math_ops._neg(x.values, name=name)
return sparse_tensor.SparseTensor(
indices=x.indices, values=x_neg, dense_shape=x.dense_shape)
else:
return gen_math_ops._neg(x, name=name)
# pylint: enable=g-docstring-has-escape
# pylint: disable=g-docstring-has-escape
示例5: sign
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import complex128 [as 別名]
def sign(x, name=None):
"""Returns an element-wise indication of the sign of a number.
`y = sign(x) = -1` if `x < 0`; 0 if `x == 0`; 1 if `x > 0`.
For complex numbers, `y = sign(x) = x / |x|` if `x != 0`, otherwise `y = 0`.
Args:
x: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
`float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
name: A name for the operation (optional).
Returns:
A `Tensor` or `SparseTensor`, respectively. Has the same type as `x`.
"""
with ops.name_scope(name, "Sign", [x]) as name:
if isinstance(x, sparse_tensor.SparseTensor):
x_sign = gen_math_ops.sign(x.values, name=name)
return sparse_tensor.SparseTensor(
indices=x.indices, values=x_sign, dense_shape=x.dense_shape)
else:
return gen_math_ops.sign(x, name=name)
示例6: sqrt
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import complex128 [as 別名]
def sqrt(x, name=None):
"""Computes square root of x element-wise.
I.e., \\(y = \sqrt{x} = x^{1/2}\\).
Args:
x: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
`float32`, `float64`, `complex64`, `complex128`.
name: A name for the operation (optional).
Returns:
A `Tensor` or `SparseTensor`, respectively. Has the same type as `x`.
"""
with ops.name_scope(name, "Sqrt", [x]) as name:
if isinstance(x, sparse_tensor.SparseTensor):
x_sqrt = gen_math_ops.sqrt(x.values, name=name)
return sparse_tensor.SparseTensor(
indices=x.indices, values=x_sqrt, dense_shape=x.dense_shape)
else:
return gen_math_ops.sqrt(x, name=name)
示例7: neg
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import complex128 [as 別名]
def neg(x, name=None):
"""Computes numerical negative value element-wise.
I.e., \\(y = -x\\).
Args:
x: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
`float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
name: A name for the operation (optional).
Returns:
A `Tensor` or `SparseTensor`, respectively. Has the same type as `x`.
"""
with ops.name_scope(name, "Neg", [x]) as name:
if isinstance(x, sparse_tensor.SparseTensor):
x_neg = gen_math_ops.neg(x.values, name=name)
return sparse_tensor.SparseTensor(
indices=x.indices, values=x_neg, shape=x.shape)
else:
return gen_math_ops.neg(x, name=name)
示例8: sign
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import complex128 [as 別名]
def sign(x, name=None):
"""Returns an element-wise indication of the sign of a number.
`y = sign(x) = -1` if `x < 0`; 0 if `x == 0`; 1 if `x > 0`.
For complex numbers, `y = sign(x) = x / |x|` if `x != 0`, otherwise `y = 0`.
Args:
x: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
`float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
name: A name for the operation (optional).
Returns:
A `Tensor` or `SparseTensor`, respectively. Has the same type as `x`.
"""
with ops.name_scope(name, "Sign", [x]) as name:
if isinstance(x, sparse_tensor.SparseTensor):
x_sign = gen_math_ops.sign(x.values, name=name)
return sparse_tensor.SparseTensor(
indices=x.indices, values=x_sign, shape=x.shape)
else:
return gen_math_ops.sign(x, name=name)
示例9: square
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import complex128 [as 別名]
def square(x, name=None):
"""Computes square of x element-wise.
I.e., \\(y = x * x = x^2\\).
Args:
x: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
`float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
name: A name for the operation (optional).
Returns:
A `Tensor` or `SparseTensor`. Has the same type as `x`.
"""
with ops.name_scope(name, "Square", [x]) as name:
if isinstance(x, sparse_tensor.SparseTensor):
x_square = gen_math_ops.square(x.values, name=name)
return sparse_tensor.SparseTensor(
indices=x.indices, values=x_square, shape=x.shape)
else:
return gen_math_ops.square(x, name=name)
示例10: complex_abs
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import complex128 [as 別名]
def complex_abs(x, name=None):
r"""Computes the complex absolute value of a tensor.
Given a tensor `x` of complex numbers, this operation returns a tensor of type
`float32` or `float64` that is the absolute value of each element in `x`. All
elements in `x` must be complex numbers of the form \\(a + bj\\). The
absolute value is computed as \\( \sqrt{a^2 + b^2}\\).
For example:
```
# tensor 'x' is [[-2.25 + 4.75j], [-3.25 + 5.75j]]
tf.complex_abs(x) ==> [5.25594902, 6.60492229]
```
Args:
x: A `Tensor` of type `complex64` or `complex128`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `float32` or `float64`.
"""
return gen_math_ops.complex_abs(x, Tout=x.dtype.real_dtype, name=name)
示例11: pow
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import complex128 [as 別名]
def pow(x, y, name=None):
"""Computes the power of one value to another.
Given a tensor `x` and a tensor `y`, this operation computes \\\\(x^y\\\\) for
corresponding elements in `x` and `y`. For example:
```
# tensor 'x' is [[2, 2], [3, 3]]
# tensor 'y' is [[8, 16], [2, 3]]
tf.pow(x, y) ==> [[256, 65536], [9, 27]]
```
Args:
x: A `Tensor` of type `float32`, `float64`, `int32`, `int64`, `complex64`,
or `complex128`.
y: A `Tensor` of type `float32`, `float64`, `int32`, `int64`, `complex64`,
or `complex128`.
name: A name for the operation (optional).
Returns:
A `Tensor`.
"""
with ops.name_scope(name, "Pow", [x]) as name:
return gen_math_ops._pow(x, y, name=name)
示例12: imag
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import complex128 [as 別名]
def imag(input, name=None):
"""Returns the imaginary part of a complex number.
Given a tensor `input` of complex numbers, this operation returns a tensor of
type `float32` or `float64` that is the imaginary part of each element in
`input`. All elements in `input` must be complex numbers of the form \\(a +
bj\\), where *a* is the real part and *b* is the imaginary part returned by
this operation.
For example:
```
# tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j]
tf.imag(input) ==> [4.75, 5.75]
```
Args:
input: A `Tensor`. Must be one of the following types: `complex64`, `complex128`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `float32` or `float64`.
"""
with ops.name_scope(name, "Imag", [input]) as name:
return gen_math_ops.imag(input, Tout=input.dtype.real_dtype, name=name)
示例13: imag
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import complex128 [as 別名]
def imag(input, name=None):
r"""Returns the imaginary part of a complex number.
Given a tensor `input` of complex numbers, this operation returns a tensor of
type `float` that is the argument of each element in `input`. All elements in
`input` must be complex numbers of the form \\(a + bj\\), where *a*
is the real part and *b* is the imaginary part returned by the operation.
For example:
```python
x = tf.constant([-2.25 + 4.75j, 3.25 + 5.75j])
tf.imag(x) # [4.75, 5.75]
```
Args:
input: A `Tensor`. Must be one of the following types: `complex64`,
`complex128`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `float32` or `float64`.
"""
with ops.name_scope(name, "Imag", [input]) as name:
return gen_math_ops.imag(input, Tout=input.dtype.real_dtype, name=name)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:27,代碼來源:math_ops.py
示例14: tanh
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import complex128 [as 別名]
def tanh(x, name=None):
"""Computes hyperbolic tangent of `x` element-wise.
Args:
x: A Tensor or SparseTensor with type `float16`, `float32`, `double`,
`complex64`, or `complex128`.
name: A name for the operation (optional).
Returns:
A Tensor or SparseTensor respectively with the same type as `x`.
"""
with ops.name_scope(name, "Tanh", [x]) as name:
if isinstance(x, sparse_tensor.SparseTensor):
x_tanh = gen_math_ops._tanh(x.values, name=name)
return sparse_tensor.SparseTensor(
indices=x.indices, values=x_tanh, dense_shape=x.dense_shape)
else:
return gen_math_ops._tanh(x, name=name)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:20,代碼來源:math_ops.py
示例15: _IsTrainable
# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import complex128 [as 別名]
def _IsTrainable(tensor):
dtype = dtypes.as_dtype(tensor.dtype)
return dtype.base_dtype in (dtypes.float16, dtypes.float32, dtypes.float64,
dtypes.complex64, dtypes.complex128)