當前位置: 首頁>>代碼示例>>Python>>正文


Python constant_op.constant方法代碼示例

本文整理匯總了Python中tensorflow.python.framework.constant_op.constant方法的典型用法代碼示例。如果您正苦於以下問題:Python constant_op.constant方法的具體用法?Python constant_op.constant怎麽用?Python constant_op.constant使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.framework.constant_op的用法示例。


在下文中一共展示了constant_op.constant方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: log_likelihood

# 需要導入模塊: from tensorflow.python.framework import constant_op [as 別名]
# 或者: from tensorflow.python.framework.constant_op import constant [as 別名]
def log_likelihood(mu, var, x, muq, varq, a, mask_flat, config):
    if config.out_distr == 'bernoulli':
        log_lik = log_bernoulli(x, mu, eps=1e-6)  # (bs*L, d1*d2)
    elif config.out_distr == 'gaussian':
        log_lik = log_gaussian(x, mu, var)

    log_lik = tf.reduce_sum(log_lik, 1)  # (bs*L, )
    log_lik = tf.multiply(mask_flat, log_lik)
    # TODO: dropout scales the output as input/keep_prob. Issue?
    if config.ll_keep_prob < 1.0:
        log_lik = tf.layers.dropout(log_lik, config.ll_keep_prob)

    # We compute the log-likelihood *per frame*
    num_el = tf.reduce_sum(mask_flat)
    log_px_given_a = tf.truediv(tf.reduce_sum(log_lik), num_el)  # ()

    if config.use_vae:
        log_qa_given_x = tf.reduce_sum(log_gaussian(a, muq, varq), 1)  # (bs*L, )
        log_qa_given_x = tf.multiply(mask_flat, log_qa_given_x)
        log_qa_given_x = tf.truediv(tf.reduce_sum(log_qa_given_x), num_el)  # ()
    else:
        log_qa_given_x = tf.constant(0.0, dtype=tf.float32, shape=())

    LL = log_px_given_a - log_qa_given_x
    return LL, log_px_given_a, log_qa_given_x 
開發者ID:simonkamronn,項目名稱:kvae,代碼行數:27,代碼來源:nn.py

示例2: __call__

# 需要導入模塊: from tensorflow.python.framework import constant_op [as 別名]
# 或者: from tensorflow.python.framework.constant_op import constant [as 別名]
def __call__(self, shape, dtype=None, partition_info=None):
        if dtype is None:
            dtype = self.dtype

        if len(shape) == 1:
            return constant_op.constant(0., dtype=dtype, shape=shape)
        elif len(shape) == 2 and shape[0] == shape[1]:
            return constant_op.constant(np.identity(shape[0], dtype))
        elif len(shape) == 4 and shape[2] == shape[3]:
            array = np.zeros(shape, dtype=float)
            cx, cy = shape[0]/2, shape[1]/2
            for i in range(shape[2]):
                array[cx, cy, i, i] = 1
            return constant_op.constant(array, dtype=dtype)
        else:
            constant_op.constant(0., dtype=dtype, shape=shape) 
開發者ID:simonkamronn,項目名稱:kvae,代碼行數:18,代碼來源:nn.py

示例3: dense_to_sparse

# 需要導入模塊: from tensorflow.python.framework import constant_op [as 別名]
# 或者: from tensorflow.python.framework.constant_op import constant [as 別名]
def dense_to_sparse(tensor, eos_token=0, outputs_collections=None, scope=None):
  """Converts a dense tensor into a sparse tensor.

  An example use would be to convert dense labels to sparse ones
  so that they can be fed to the ctc_loss.

  Args:
     tensor: An `int` `Tensor` to be converted to a `Sparse`.
     eos_token: An integer. It is part of the target label that signifies the
       end of a sentence.
     outputs_collections: Collection to add the outputs.
     scope: Optional scope for name_scope.
  """
  with variable_scope.variable_scope(scope, 'dense_to_sparse', [tensor]) as sc:
    tensor = ops.convert_to_tensor(tensor)
    indices = array_ops.where(
        math_ops.not_equal(tensor, constant_op.constant(eos_token,
                                                        tensor.dtype)))
    values = array_ops.gather_nd(tensor, indices)
    shape = array_ops.shape(tensor, out_type=dtypes.int64)
    outputs = sparse_tensor.SparseTensor(indices, values, shape)
    return utils.collect_named_outputs(outputs_collections, sc.name, outputs) 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:24,代碼來源:layers.py

示例4: testDebugWhileLoopWatchingWholeGraphWorks

# 需要導入模塊: from tensorflow.python.framework import constant_op [as 別名]
# 或者: from tensorflow.python.framework.constant_op import constant [as 別名]
def testDebugWhileLoopWatchingWholeGraphWorks(self):
    with session.Session() as sess:
      loop_body = lambda i: math_ops.add(i, 2)
      loop_cond = lambda i: math_ops.less(i, 16)

      i = constant_op.constant(10, name="i")
      loop = control_flow_ops.while_loop(loop_cond, loop_body, [i])

      run_options = config_pb2.RunOptions(output_partition_graphs=True)
      debug_utils.watch_graph(run_options,
                              sess.graph,
                              debug_urls=self._debug_urls())
      run_metadata = config_pb2.RunMetadata()
      self.assertEqual(
          16, sess.run(loop, options=run_options, run_metadata=run_metadata))

      dump = debug_data.DebugDumpDir(
          self._dump_root, partition_graphs=run_metadata.partition_graphs)

      self.assertEqual(
          [[10]], dump.get_tensors("while/Enter", 0, "DebugIdentity"))
      self.assertEqual(
          [[12], [14], [16]],
          dump.get_tensors("while/NextIteration", 0, "DebugIdentity")) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:session_debug_testlib.py

示例5: shape_internal

# 需要導入模塊: from tensorflow.python.framework import constant_op [as 別名]
# 或者: from tensorflow.python.framework.constant_op import constant [as 別名]
def shape_internal(input, name=None, optimize=True, out_type=dtypes.int32):
  # pylint: disable=redefined-builtin
  """Returns the shape of a tensor.

  Args:
    input: A `Tensor` or `SparseTensor`.
    name: A name for the operation (optional).
    optimize: if true, encode the shape as a constant when possible.
    out_type: (Optional) The specified output type of the operation
      (`int32` or `int64`). Defaults to tf.int32.

  Returns:
    A `Tensor` of type `out_type`.

  """
  with ops.name_scope(name, "Shape", [input]) as name:
    if isinstance(
        input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
      return gen_math_ops.cast(input.dense_shape, out_type)
    else:
      input_tensor = ops.convert_to_tensor(input)
      input_shape = input_tensor.get_shape()
      if optimize and input_shape.is_fully_defined():
        return constant(input_shape.as_list(), out_type, name=name)
      return gen_array_ops.shape(input, name=name, out_type=out_type) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:27,代碼來源:array_ops.py

示例6: rank_internal

# 需要導入模塊: from tensorflow.python.framework import constant_op [as 別名]
# 或者: from tensorflow.python.framework.constant_op import constant [as 別名]
def rank_internal(input, name=None, optimize=True):
  # pylint: disable=redefined-builtin
  """Returns the rank of a tensor.

  Args:
    input: A `Tensor` or `SparseTensor`.
    name: A name for the operation (optional).
    optimize: if true, encode the rank as a constant when possible.

  Returns:
    A `Tensor` of type `int32`.
  """
  with ops.name_scope(name, "Rank", [input]) as name:
    if isinstance(
        input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
      return gen_array_ops.size(input.dense_shape, name=name)
    else:
      input_tensor = ops.convert_to_tensor(input)
      input_shape = input_tensor.get_shape()
      if optimize and input_shape.ndims is not None:
        return constant(input_shape.ndims, dtypes.int32, name=name)
      return gen_array_ops.rank(input, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:array_ops.py

示例7: _kl_normal_normal

# 需要導入模塊: from tensorflow.python.framework import constant_op [as 別名]
# 或者: from tensorflow.python.framework.constant_op import constant [as 別名]
def _kl_normal_normal(n_a, n_b, name=None):
  """Calculate the batched KL divergence KL(n_a || n_b) with n_a and n_b Normal.

  Args:
    n_a: instance of a Normal distribution object.
    n_b: instance of a Normal distribution object.
    name: (optional) Name to use for created operations.
      default is "kl_normal_normal".

  Returns:
    Batchwise KL(n_a || n_b)
  """
  with ops.name_scope(name, "kl_normal_normal", [n_a.loc, n_b.loc]):
    one = constant_op.constant(1, dtype=n_a.dtype)
    two = constant_op.constant(2, dtype=n_a.dtype)
    half = constant_op.constant(0.5, dtype=n_a.dtype)
    s_a_squared = math_ops.square(n_a.scale)
    s_b_squared = math_ops.square(n_b.scale)
    ratio = s_a_squared / s_b_squared
    return (math_ops.square(n_a.loc - n_b.loc) / (two * s_b_squared) +
            half * (ratio - one - math_ops.log(ratio))) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:normal.py

示例8: _reduce_join_reduction_dims

# 需要導入模塊: from tensorflow.python.framework import constant_op [as 別名]
# 或者: from tensorflow.python.framework.constant_op import constant [as 別名]
def _reduce_join_reduction_dims(x, axis, reduction_indices):
  """Returns range(rank(x) - 1, 0, -1) if reduction_indices is None."""
  # TODO(aselle): Remove this after deprecation
  if reduction_indices is not None:
    if axis is not None:
      raise ValueError("Can't specify both 'axis' and 'reduction_indices'.")
    axis = reduction_indices
  if axis is not None:
    return axis
  else:
    # Fast path: avoid creating Rank and Range ops if ndims is known.
    if isinstance(x, ops.Tensor) and x.get_shape().ndims is not None:
      return constant_op.constant(
          np.arange(x.get_shape().ndims - 1, -1, -1), dtype=dtypes.int32)

    # Otherwise, we rely on Range and Rank to do the right thing at run-time.
    return math_ops.range(array_ops.rank(x) - 1, -1, -1) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:string_ops.py

示例9: multiply_gradients

# 需要導入模塊: from tensorflow.python.framework import constant_op [as 別名]
# 或者: from tensorflow.python.framework.constant_op import constant [as 別名]
def multiply_gradients(grads_and_vars, gradient_multipliers):
  """Multiply specified gradients.

  Args:
    grads_and_vars: A list of gradient to variable pairs (tuples).
    gradient_multipliers: A map from either `Variables` or `Variable` op names
      to the coefficient by which the associated gradient should be scaled.

  Returns:
    The updated list of gradient to variable pairs.

  Raises:
    ValueError: If `grads_and_vars` is not a list or if `gradient_multipliers`
    is empty or None or if `gradient_multipliers` is not a dictionary.
  """
  if not isinstance(grads_and_vars, list):
    raise ValueError('`grads_and_vars` must be a list.')
  if not gradient_multipliers:
    raise ValueError('`gradient_multipliers` is empty.')
  if not isinstance(gradient_multipliers, dict):
    raise ValueError('`gradient_multipliers` must be a dict.')

  multiplied_grads_and_vars = []
  for grad, var in grads_and_vars:
    if var in gradient_multipliers or var.op.name in gradient_multipliers:
      key = var if var in gradient_multipliers else var.op.name
      if grad is None:
        raise ValueError('Requested multiple of `None` gradient.')

      multiplier = gradient_multipliers[key]
      if not isinstance(multiplier, ops.Tensor):
        multiplier = constant_op.constant(multiplier, dtype=grad.dtype)

      if isinstance(grad, ops.IndexedSlices):
        tmp = grad.values * multiplier
        grad = ops.IndexedSlices(tmp, grad.indices, grad.dense_shape)
      else:
        grad *= multiplier
    multiplied_grads_and_vars.append((grad, var))
  return multiplied_grads_and_vars 
開發者ID:yuantailing,項目名稱:ctw-baseline,代碼行數:42,代碼來源:learning.py

示例10: apply_regularization

# 需要導入模塊: from tensorflow.python.framework import constant_op [as 別名]
# 或者: from tensorflow.python.framework.constant_op import constant [as 別名]
def apply_regularization(regularizer, weights_list=None):
  """Returns the summed penalty by applying `regularizer` to the `weights_list`.

  Adding a regularization penalty over the layer weights and embedding weights
  can help prevent overfitting the training data. Regularization over layer
  biases is less common/useful, but assuming proper data preprocessing/mean
  subtraction, it usually shouldn't hurt much either.

  Args:
    regularizer: A function that takes a single `Tensor` argument and returns
      a scalar `Tensor` output.
    weights_list: List of weights `Tensors` or `Variables` to apply
      `regularizer` over. Defaults to the `GraphKeys.WEIGHTS` collection if
      `None`.

  Returns:
    A scalar representing the overall regularization penalty.

  Raises:
    ValueError: If `regularizer` does not return a scalar output, or if we find
        no weights.
  """
  if not weights_list:
    weights_list = ops.get_collection(ops.GraphKeys.WEIGHTS)
  if not weights_list:
    raise ValueError('No weights to regularize.')
  with ops.name_scope('get_regularization_penalty',
                      values=weights_list) as scope:
    penalties = [regularizer(w) for w in weights_list]
    penalties = [
        p if p is not None else constant_op.constant(0.0) for p in penalties
    ]
    for p in penalties:
      if p.get_shape().ndims != 0:
        raise ValueError('regularizer must return a scalar Tensor instead of a '
                         'Tensor with rank %d.' % p.get_shape().ndims)

    summed_penalty = math_ops.add_n(penalties, name=scope)
    ops.add_to_collection(ops.GraphKeys.REGULARIZATION_LOSSES, summed_penalty)
    return summed_penalty 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:42,代碼來源:regularizers.py

示例11: _create_zero_outputs

# 需要導入模塊: from tensorflow.python.framework import constant_op [as 別名]
# 或者: from tensorflow.python.framework.constant_op import constant [as 別名]
def _create_zero_outputs(size, dtype, batch_size):
    """Create a zero outputs Tensor structure."""
    def _t(s):
        return (s if isinstance(s, ops.Tensor) else constant_op.constant(
            tensor_shape.TensorShape(s).as_list(),
            dtype=dtypes.int32,
            name="zero_suffix_shape"))

    def _create(s, d):
        return array_ops.zeros(
            array_ops.concat(
                ([batch_size], _t(s)), axis=0), dtype=d)

    return nest.map_structure(_create, size, dtype) 
開發者ID:hirofumi0810,項目名稱:tensorflow_end2end_speech_recognition,代碼行數:16,代碼來源:dynamic_decoder.py

示例12: _session_run_for_graph_structure_lookup

# 需要導入模塊: from tensorflow.python.framework import constant_op [as 別名]
# 或者: from tensorflow.python.framework.constant_op import constant [as 別名]
def _session_run_for_graph_structure_lookup(self):
    with session.Session() as sess:
      u_name = "testDumpGraphStructureLookup/u"
      v_name = "testDumpGraphStructureLookup/v"
      w_name = "testDumpGraphStructureLookup/w"

      u_init = constant_op.constant([2.0, 4.0])
      u = variables.Variable(u_init, name=u_name)
      v = math_ops.add(u, u, name=v_name)
      w = math_ops.add(v, v, name=w_name)

      u.initializer.run()

      run_options = config_pb2.RunOptions(output_partition_graphs=True)
      debug_utils.watch_graph(
          run_options,
          sess.graph,
          debug_ops=["DebugIdentity"],
          debug_urls=self._debug_urls())

      run_metadata = config_pb2.RunMetadata()
      sess.run(w, options=run_options, run_metadata=run_metadata)

    self.assertEqual(self._expected_partition_graph_count,
                     len(run_metadata.partition_graphs))

    dump = debug_data.DebugDumpDir(
        self._dump_root, partition_graphs=run_metadata.partition_graphs)

    return u_name, v_name, w_name, dump 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:32,代碼來源:session_debug_testlib.py

示例13: testOutputSlotWithoutOutgoingEdgeCanBeWatched

# 需要導入模塊: from tensorflow.python.framework import constant_op [as 別名]
# 或者: from tensorflow.python.framework.constant_op import constant [as 別名]
def testOutputSlotWithoutOutgoingEdgeCanBeWatched(self):
    """Test watching output slots not attached to any outgoing edges."""

    with session.Session() as sess:
      u_init_val = np.array([[5.0, 3.0], [-1.0, 0.0]])
      u = constant_op.constant(u_init_val, shape=[2, 2], name="u")

      # Create a control edge from a node with an output: From u to z.
      # Node u will get executed only because of the control edge. The output
      # tensor u:0 is not attached to any outgoing edge in the graph. This test
      # checks that the debugger can watch such a tensor.
      with ops.control_dependencies([u]):
        z = control_flow_ops.no_op(name="z")

      run_options = config_pb2.RunOptions(output_partition_graphs=True)
      debug_utils.watch_graph(
          run_options,
          sess.graph,
          debug_ops=["DebugIdentity"],
          debug_urls=self._debug_urls())

      run_metadata = config_pb2.RunMetadata()
      sess.run(z, options=run_options, run_metadata=run_metadata)

      dump = debug_data.DebugDumpDir(
          self._dump_root, partition_graphs=run_metadata.partition_graphs)

      # Assert that the DebugIdentity watch on u works properly.
      self.assertEqual(1, len(dump.dumped_tensor_data))
      datum = dump.dumped_tensor_data[0]
      self.assertEqual("u", datum.node_name)
      self.assertEqual(0, datum.output_slot)
      self.assertEqual("DebugIdentity", datum.debug_op)
      self.assertAllClose([[5.0, 3.0], [-1.0, 0.0]], datum.get_tensor()) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:36,代碼來源:session_debug_testlib.py

示例14: zeros

# 需要導入模塊: from tensorflow.python.framework import constant_op [as 別名]
# 或者: from tensorflow.python.framework.constant_op import constant [as 別名]
def zeros(shape, dtype=dtypes.float32, name=None):
  """Creates a tensor with all elements set to zero.

  This operation returns a tensor of type `dtype` with shape `shape` and
  all elements set to zero.

  For example:

  ```python
  tf.zeros([3, 4], tf.int32) ==> [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
  ```

  Args:
    shape: Either a list of integers, or a 1-D `Tensor` of type `int32`.
    dtype: The type of an element in the resulting `Tensor`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` with all elements set to zero.
  """
  dtype = dtypes.as_dtype(dtype).base_dtype
  with ops.name_scope(name, "zeros", [shape]) as name:
    if dtype == dtypes.bool:
      zero = False
    elif dtype == dtypes.string:
      zero = ""
    else:
      zero = 0
    try:
      shape = tensor_shape.as_shape(shape)
      output = constant(zero, shape=shape, dtype=dtype, name=name)
    except (TypeError, ValueError):
      shape = ops.convert_to_tensor(shape, dtype=dtypes.int32, name="shape")
      output = fill(shape, constant(zero, dtype=dtype), name=name)
  assert output.dtype.base_dtype == dtype
  return output 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:38,代碼來源:array_ops.py

示例15: zeros_like

# 需要導入模塊: from tensorflow.python.framework import constant_op [as 別名]
# 或者: from tensorflow.python.framework.constant_op import constant [as 別名]
def zeros_like(tensor, dtype=None, name=None, optimize=True):
  """Creates a tensor with all elements set to zero.

  Given a single tensor (`tensor`), this operation returns a tensor of the
  same type and shape as `tensor` with all elements set to zero. Optionally,
  you can use `dtype` to specify a new type for the returned tensor.

  For example:

  ```python
  # 'tensor' is [[1, 2, 3], [4, 5, 6]]
  tf.zeros_like(tensor) ==> [[0, 0, 0], [0, 0, 0]]
  ```

  Args:
    tensor: A `Tensor`.
    dtype: A type for the returned `Tensor`. Must be `float32`, `float64`,
    `int8`, `int16`, `int32`, `int64`, `uint8`, `complex64`, or `complex128`.
    name: A name for the operation (optional).
    optimize: if true, attempt to statically determine the shape of 'tensor'
    and encode it as a constant.

  Returns:
    A `Tensor` with all elements set to zero.
  """
  with ops.name_scope(name, "zeros_like", [tensor]) as name:
    tensor = ops.convert_to_tensor(tensor, name="tensor")

    if tensor.shape.is_fully_defined():
      # We can produce a zeros tensor independent of the value of 'tensor',
      # since the shape is known statically.
      return zeros(tensor.shape, dtype=dtype or tensor.dtype, name=name)

    if dtype is not None and dtype != tensor.dtype:
      return zeros(shape_internal(tensor, optimize=optimize), dtype=dtype,
                   name=name)
    else:
      return gen_array_ops._zeros_like(tensor, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:40,代碼來源:array_ops.py


注:本文中的tensorflow.python.framework.constant_op.constant方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。