當前位置: 首頁>>代碼示例>>Python>>正文


Python run_config.RunConfig方法代碼示例

本文整理匯總了Python中tensorflow.python.estimator.run_config.RunConfig方法的典型用法代碼示例。如果您正苦於以下問題:Python run_config.RunConfig方法的具體用法?Python run_config.RunConfig怎麽用?Python run_config.RunConfig使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.estimator.run_config的用法示例。


在下文中一共展示了run_config.RunConfig方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _get_model_dir

# 需要導入模塊: from tensorflow.python.estimator import run_config [as 別名]
# 或者: from tensorflow.python.estimator.run_config import RunConfig [as 別名]
def _get_model_dir(model_dir):
  """Returns `model_dir` based user provided `model_dir` or `TF_CONFIG`."""

  model_dir_in_tf_config = json.loads(
      os.environ.get('TF_CONFIG') or '{}').get('model_dir', None)
  if model_dir_in_tf_config is not None:
    if model_dir is not None and model_dir_in_tf_config != model_dir:
      raise ValueError(
          '`model_dir` provided in RunConfig construct, if set, '
          'must have the same value as the model_dir in TF_CONFIG. '
          'model_dir: {}\nTF_CONFIG["model_dir"]: {}.\n'.format(
              model_dir, model_dir_in_tf_config))

    logging.info('Using model_dir in TF_CONFIG: %s', model_dir_in_tf_config)

  return model_dir or model_dir_in_tf_config 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:run_config.py

示例2: __init__

# 需要導入模塊: from tensorflow.python.estimator import run_config [as 別名]
# 或者: from tensorflow.python.estimator.run_config import RunConfig [as 別名]
def __init__(self, id, args, worker_address, sink_address):
        super().__init__()
        self.model_dir = args.model_dir
        self.config_fp = os.path.join(self.model_dir, 'bert_config.json')
        self.checkpoint_fp = os.path.join(self.model_dir, 'bert_model.ckpt')
        self.vocab_fp = os.path.join(args.model_dir, 'vocab.txt')
        self.tokenizer = tokenization.FullTokenizer(vocab_file=self.vocab_fp)
        self.max_seq_len = args.max_seq_len
        self.worker_id = id
        self.daemon = True
        self.model_fn = model_fn_builder(
            bert_config=modeling.BertConfig.from_json_file(self.config_fp),
            init_checkpoint=self.checkpoint_fp,
            pooling_strategy=args.pooling_strategy,
            pooling_layer=args.pooling_layer
        )
        os.environ['CUDA_VISIBLE_DEVICES'] = str(self.worker_id)
        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        config.gpu_options.per_process_gpu_memory_fraction = args.gpu_memory_fraction
        self.estimator = Estimator(self.model_fn, config=RunConfig(session_config=config))
        self.exit_flag = multiprocessing.Event()
        self.logger = set_logger('WORKER-%d' % self.worker_id)
        self.worker_address = worker_address
        self.sink_address = sink_address 
開發者ID:a414351664,項目名稱:Bert-TextClassification,代碼行數:27,代碼來源:server.py

示例3: _get_replica_device_setter

# 需要導入模塊: from tensorflow.python.estimator import run_config [as 別名]
# 或者: from tensorflow.python.estimator.run_config import RunConfig [as 別名]
def _get_replica_device_setter(config):
  """Creates a replica device setter if required as a default device_fn.

  `Estimator` uses ReplicaDeviceSetter as a default device placer. It sets the
  distributed related arguments such as number of ps_replicas based on given
  config.

  Args:
    config: A `RunConfig` instance.

  Returns:
    A replica device setter, or None.
  """
  ps_ops = [
      'Variable', 'VariableV2', 'AutoReloadVariable', 'MutableHashTable',
      'MutableHashTableOfTensors', 'MutableDenseHashTable'
  ]

  if config.task_type:
    worker_device = '/job:%s/task:%d' % (config.task_type, config.task_id)
  else:
    worker_device = '/job:worker'

  if config.num_ps_replicas > 0:
    return training.replica_device_setter(
        ps_tasks=config.num_ps_replicas,
        worker_device=worker_device,
        merge_devices=True,
        ps_ops=ps_ops,
        cluster=config.cluster_spec)
  else:
    return None 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:34,代碼來源:estimator.py

示例4: uid

# 需要導入模塊: from tensorflow.python.estimator import run_config [as 別名]
# 或者: from tensorflow.python.estimator.run_config import RunConfig [as 別名]
def uid(self, whitelist=None):
    """Generates a 'Unique Identifier' based on all internal fields.

    Caller should use the uid string to check `RunConfig` instance integrity
    in one session use, but should not rely on the implementation details, which
    is subject to change.

    Args:
      whitelist: A list of the string names of the properties uid should not
        include. If `None`, defaults to `_DEFAULT_UID_WHITE_LIST`, which
        includes most properites user allowes to change.

    Returns:
      A uid string.
    """
    if whitelist is None:
      whitelist = _DEFAULT_UID_WHITE_LIST

    state = {k: v for k, v in self.__dict__.items() if not k.startswith('__')}
    # Pop out the keys in whitelist.
    for k in whitelist:
      state.pop('_' + k, None)

    ordered_state = collections.OrderedDict(
        sorted(state.items(), key=lambda t: t[0]))
    # For class instance without __repr__, some special cares are required.
    # Otherwise, the object address will be used.
    if '_cluster_spec' in ordered_state:
      ordered_state['_cluster_spec'] = ordered_state['_cluster_spec'].as_dict()
    return ', '.join(
        '%s=%r' % (k, v) for (k, v) in six.iteritems(ordered_state)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:33,代碼來源:run_config.py

示例5: get_estimator

# 需要導入模塊: from tensorflow.python.estimator import run_config [as 別名]
# 或者: from tensorflow.python.estimator.run_config import RunConfig [as 別名]
def get_estimator(self, tf):
        from tensorflow.python.estimator.estimator import Estimator
        from tensorflow.python.estimator.run_config import RunConfig
        from tensorflow.python.estimator.model_fn import EstimatorSpec

        def model_fn(features, labels, mode, params):
            with tf.gfile.GFile(self.graph_path, 'rb') as f:
                graph_def = tf.GraphDef()
                graph_def.ParseFromString(f.read())

            input_names = ['input_ids', 'input_mask', 'input_type_ids']

            output = tf.import_graph_def(graph_def,
                                         input_map={k + ':0': features[k] for k in input_names},
                                         return_elements=['final_encodes:0'])

            return EstimatorSpec(mode=mode, predictions={
                'client_id': features['client_id'],
                'encodes': output[0]
            })

        config = tf.ConfigProto(device_count={'GPU': 0 if self.device_id < 0 else 1})
        config.gpu_options.allow_growth = True
        config.gpu_options.per_process_gpu_memory_fraction = self.gpu_memory_fraction
        config.log_device_placement = False
        # session-wise XLA doesn't seem to work on tf 1.10
        # if args.xla:
        #     config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1

        return Estimator(model_fn=model_fn, config=RunConfig(session_config=config)) 
開發者ID:hanxiao,項目名稱:bert-as-service,代碼行數:32,代碼來源:__init__.py

示例6: get_estimator

# 需要導入模塊: from tensorflow.python.estimator import run_config [as 別名]
# 或者: from tensorflow.python.estimator.run_config import RunConfig [as 別名]
def get_estimator(self):
        from tensorflow.python.estimator.estimator import Estimator
        from tensorflow.python.estimator.run_config import RunConfig
        from tensorflow.python.estimator.model_fn import EstimatorSpec

        def model_fn(features, labels, mode, params):
            with tf.gfile.GFile(self.graph_path, 'rb') as f:
                graph_def = tf.GraphDef()
                graph_def.ParseFromString(f.read())

            input_names = ['input_ids', 'input_mask', 'input_type_ids']

            output = tf.import_graph_def(graph_def,
                                         input_map={k + ':0': features[k] for k in input_names},
                                         return_elements=['final_encodes:0'])

            return EstimatorSpec(mode=mode, predictions={
                'encodes': output[0]
            })

        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        config.gpu_options.per_process_gpu_memory_fraction = self.gpu_memory_fraction
        config.log_device_placement = False
        config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1

        return Estimator(model_fn=model_fn, config=RunConfig(session_config=config),
                         params={'batch_size': self.batch_size}, model_dir='../tmp') 
開發者ID:terrifyzhao,項目名稱:bert-utils,代碼行數:30,代碼來源:extract_feature.py

示例7: get_estimator

# 需要導入模塊: from tensorflow.python.estimator import run_config [as 別名]
# 或者: from tensorflow.python.estimator.run_config import RunConfig [as 別名]
def get_estimator(self):

        from tensorflow.python.estimator.estimator import Estimator
        from tensorflow.python.estimator.run_config import RunConfig

        bert_config = modeling.BertConfig.from_json_file(args.config_name)
        label_list = self.processor.get_labels()
        train_examples = self.processor.get_train_examples(args.data_dir)
        num_train_steps = int(
            len(train_examples) / self.batch_size * args.num_train_epochs)
        num_warmup_steps = int(num_train_steps * 0.1)

        if self.mode == tf.estimator.ModeKeys.TRAIN:
            init_checkpoint = args.ckpt_name
        else:
            init_checkpoint = args.output_dir

        model_fn = self.model_fn_builder(
            bert_config=bert_config,
            num_labels=len(label_list),
            init_checkpoint=init_checkpoint,
            learning_rate=args.learning_rate,
            num_train_steps=num_train_steps,
            num_warmup_steps=num_warmup_steps,
            use_one_hot_embeddings=False)

        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        config.gpu_options.per_process_gpu_memory_fraction = args.gpu_memory_fraction
        config.log_device_placement = False

        return Estimator(model_fn=model_fn, config=RunConfig(session_config=config), model_dir=args.output_dir,
                         params={'batch_size': self.batch_size}) 
開發者ID:terrifyzhao,項目名稱:bert-utils,代碼行數:35,代碼來源:similarity.py

示例8: create_estimator_and_tokenizer

# 需要導入模塊: from tensorflow.python.estimator import run_config [as 別名]
# 或者: from tensorflow.python.estimator.run_config import RunConfig [as 別名]
def create_estimator_and_tokenizer(self):
        config_fp = os.path.join(self.model_dir, 'bert_config.json')
        checkpoint_fp = os.path.join(self.model_dir, 'bert_model.ckpt')
        vocab_fp = os.path.join(self.model_dir, 'vocab.txt')

        tokenizer = tokenization.FullTokenizer(vocab_file=vocab_fp)

        model_fn = model_fn_builder(
            bert_config=modeling.BertConfig.from_json_file(config_fp),
            init_checkpoint=checkpoint_fp,
            pooling_strategy=PoolingStrategy.NONE,
            pooling_layer=[-2]
        )

        config = tf.ConfigProto(
            device_count={
                'CPU': cpu_count()
            },
            inter_op_parallelism_threads=0,
            intra_op_parallelism_threads=0,
            gpu_options={
                'allow_growth': True
            }
        )

        estimator = Estimator(model_fn, config=RunConfig(
            session_config=config), model_dir=None)

        return estimator, tokenizer 
開發者ID:GaoQ1,項目名稱:rasa_nlu_gq,代碼行數:31,代碼來源:encoder.py

示例9: get_estimator

# 需要導入模塊: from tensorflow.python.estimator import run_config [as 別名]
# 或者: from tensorflow.python.estimator.run_config import RunConfig [as 別名]
def get_estimator(self):
        from tensorflow.python.estimator.estimator import Estimator
        from tensorflow.python.estimator.run_config import RunConfig
        from tensorflow.python.estimator.model_fn import EstimatorSpec

        def model_fn(features, labels, mode, params):
            with tf.gfile.GFile(self.graph_path, 'rb') as f:
                graph_def = tf.GraphDef()
                graph_def.ParseFromString(f.read())

            input_names = ['input_ids', 'input_mask', 'input_type_ids']

            output = tf.import_graph_def(graph_def,
                                         input_map={k + ':0': features[k] for k in input_names},
                                         return_elements=['final_encodes:0'])

            return EstimatorSpec(mode=mode, predictions={
                'encodes': output[0]
            })

        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        config.gpu_options.per_process_gpu_memory_fraction = self.gpu_memory_fraction
        config.log_device_placement = False
        config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1

        return Estimator(model_fn=model_fn, config=RunConfig(session_config=config),
                         params={'batch_size': self.batch_size}) 
開發者ID:shibing624,項目名稱:text2vec,代碼行數:30,代碼來源:extract_feature.py

示例10: get_estimator

# 需要導入模塊: from tensorflow.python.estimator import run_config [as 別名]
# 或者: from tensorflow.python.estimator.run_config import RunConfig [as 別名]
def get_estimator(self):

        from tensorflow.python.estimator.estimator import Estimator
        from tensorflow.python.estimator.run_config import RunConfig

        bert_config = modeling.BertConfig.from_json_file(self.config_name)
        label_list = self.processor.get_labels()
        train_examples = self.processor.get_train_examples(self.data_dir)
        num_train_steps = int(
            len(train_examples) / self.batch_size * self.num_train_epochs)
        num_warmup_steps = int(num_train_steps * 0.1)

        if self.mode == tf.estimator.ModeKeys.TRAIN:
            init_checkpoint = self.ckpt_name
        else:
            init_checkpoint = self.output_dir

        model_fn = self.model_fn_builder(
            bert_config=bert_config,
            num_labels=len(label_list),
            init_checkpoint=init_checkpoint,
            learning_rate=self.learning_rate,
            num_train_steps=num_train_steps,
            num_warmup_steps=num_warmup_steps,
            use_one_hot_embeddings=False)

        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        config.gpu_options.per_process_gpu_memory_fraction = self.gpu_memory_fraction
        config.log_device_placement = False

        return Estimator(model_fn=model_fn, config=RunConfig(session_config=config), model_dir=self.output_dir,
                         params={'batch_size': self.batch_size}) 
開發者ID:shibing624,項目名稱:text2vec,代碼行數:35,代碼來源:model.py

示例11: _call_model_fn

# 需要導入模塊: from tensorflow.python.estimator import run_config [as 別名]
# 或者: from tensorflow.python.estimator.run_config import RunConfig [as 別名]
def _call_model_fn(self, features, labels, mode, config):
    """Calls model function.
    Args:
      features: features dict.
      labels: labels dict.
      mode: ModeKeys
      config: RunConfig
    Returns:
      An `EstimatorSpec` object.
    Raises:
      ValueError: if model_fn returns invalid objects.
    """
    model_fn_args = util.fn_args(self._model_fn)
    kwargs = {}
    if 'labels' in model_fn_args:
      kwargs['labels'] = labels
    else:
      if labels is not None:
        raise ValueError(
            'model_fn does not take labels, but input_fn returns labels.')
    if 'mode' in model_fn_args:
      kwargs['mode'] = mode
    if 'params' in model_fn_args:
      kwargs['params'] = self.params
    if 'config' in model_fn_args:
      kwargs['config'] = config
    model_fn_results = self._model_fn(features=features, **kwargs)

    if not isinstance(model_fn_results, model_fn_lib.EstimatorSpec):
      raise ValueError('model_fn should return an EstimatorSpec.')

    return model_fn_results 
開發者ID:cramerlab,項目名稱:boxnet,代碼行數:34,代碼來源:estimator_v2.py

示例12: _get_replica_device_setter

# 需要導入模塊: from tensorflow.python.estimator import run_config [as 別名]
# 或者: from tensorflow.python.estimator.run_config import RunConfig [as 別名]
def _get_replica_device_setter(config):
  """Creates a replica device setter if required as a default device_fn.
  `Estimator` uses ReplicaDeviceSetter as a default device placer. It sets the
  distributed related arguments such as number of ps_replicas based on given
  config.
  Args:
    config: A `RunConfig` instance.
  Returns:
    A replica device setter, or None.
  """
  ps_ops = [
      'Variable', 'VariableV2', 'AutoReloadVariable', 'MutableHashTable',
      'MutableHashTableV2', 'MutableHashTableOfTensors',
      'MutableHashTableOfTensorsV2', 'MutableDenseHashTable',
      'MutableDenseHashTableV2'
  ]

  if config.task_type:
    worker_device = '/job:%s/task:%d' % (config.task_type, config.task_id)
  else:
    worker_device = '/job:worker'

  if config.num_ps_replicas > 0:
    return training.replica_device_setter(
        ps_tasks=config.num_ps_replicas,
        worker_device=worker_device,
        merge_devices=True,
        ps_ops=ps_ops,
        cluster=config.cluster_spec)
  else:
    return None 
開發者ID:cramerlab,項目名稱:boxnet,代碼行數:33,代碼來源:estimator_v2.py

示例13: _call_model_fn

# 需要導入模塊: from tensorflow.python.estimator import run_config [as 別名]
# 或者: from tensorflow.python.estimator.run_config import RunConfig [as 別名]
def _call_model_fn(self, features, labels, mode, config):
    """Calls model function.

    Args:
      features: features dict.
      labels: labels dict.
      mode: ModeKeys
      config: RunConfig

    Returns:
      An `EstimatorSpec` object.

    Raises:
      ValueError: if model_fn returns invalid objects.
    """
    model_fn_args = util.fn_args(self._model_fn)
    kwargs = {}
    if 'labels' in model_fn_args:
      kwargs['labels'] = labels
    else:
      if labels is not None:
        raise ValueError(
            'model_fn does not take labels, but input_fn returns labels.')
    if 'mode' in model_fn_args:
      kwargs['mode'] = mode
    if 'params' in model_fn_args:
      kwargs['params'] = self.params
    if 'config' in model_fn_args:
      kwargs['config'] = config
    model_fn_results = self._model_fn(features=features, **kwargs)

    if not isinstance(model_fn_results, model_fn_lib.EstimatorSpec):
      raise ValueError('model_fn should return an EstimatorSpec.')

    return model_fn_results 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:37,代碼來源:estimator.py

示例14: _get_replica_device_setter

# 需要導入模塊: from tensorflow.python.estimator import run_config [as 別名]
# 或者: from tensorflow.python.estimator.run_config import RunConfig [as 別名]
def _get_replica_device_setter(config):
  """Creates a replica device setter if required as a default device_fn.

  `Estimator` uses ReplicaDeviceSetter as a default device placer. It sets the
  distributed related arguments such as number of ps_replicas based on given
  config.

  Args:
    config: A `RunConfig` instance.

  Returns:
    A replica device setter, or None.
  """
  ps_ops = [
      'Variable', 'VariableV2', 'AutoReloadVariable', 'MutableHashTable',
      'MutableHashTableV2', 'MutableHashTableOfTensors',
      'MutableHashTableOfTensorsV2', 'MutableDenseHashTable',
      'MutableDenseHashTableV2'
  ]

  if config.task_type:
    worker_device = '/job:%s/task:%d' % (config.task_type, config.task_id)
  else:
    worker_device = '/job:worker'

  if config.num_ps_replicas > 0:
    return training.replica_device_setter(
        ps_tasks=config.num_ps_replicas,
        worker_device=worker_device,
        merge_devices=True,
        ps_ops=ps_ops,
        cluster=config.cluster_spec)
  else:
    return None 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:36,代碼來源:estimator.py


注:本文中的tensorflow.python.estimator.run_config.RunConfig方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。