本文整理匯總了Python中tensorflow.python.estimator.estimator.Estimator方法的典型用法代碼示例。如果您正苦於以下問題:Python estimator.Estimator方法的具體用法?Python estimator.Estimator怎麽用?Python estimator.Estimator使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.estimator.estimator
的用法示例。
在下文中一共展示了estimator.Estimator方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _evaluate_estimator
# 需要導入模塊: from tensorflow.python.estimator import estimator [as 別名]
# 或者: from tensorflow.python.estimator.estimator import Estimator [as 別名]
def _evaluate_estimator(self):
if isinstance(self._estimator, core_estimator.Estimator):
if any((x is not None for x in
[self.x, self.y, self.batch_size, self.metrics])):
raise ValueError(
"tf.estimator.Estimator does not support following "
"arguments: x, y, batch_size, metrics. Should set as `None` "
"in ValidationMonitor")
return self._estimator.evaluate(
input_fn=self.input_fn, steps=self.eval_steps, hooks=self.hooks,
name=self.name)
else:
return self._estimator.evaluate(
x=self.x, y=self.y, input_fn=self.input_fn,
batch_size=self.batch_size, steps=self.eval_steps,
metrics=self.metrics, hooks=self.hooks, name=self.name)
示例2: end
# 需要導入模塊: from tensorflow.python.estimator import estimator [as 別名]
# 或者: from tensorflow.python.estimator.estimator import Estimator [as 別名]
def end(self, session=None):
super(ExportMonitor, self).end(session=session)
latest_path = saver_lib.latest_checkpoint(self._estimator.model_dir)
if latest_path is None:
logging.info("Skipping export at the end since model has not been saved "
"yet.")
return
if isinstance(self._estimator, core_estimator.Estimator):
raise ValueError(
"ExportMonitor does not support `tf.estimator.Estimator. `. "
"Please pass an ExportStrategy to Experiment instead.")
try:
self._last_export_dir = self._estimator.export(
self.export_dir,
exports_to_keep=self.exports_to_keep,
signature_fn=self.signature_fn,
input_fn=self._input_fn,
default_batch_size=self._default_batch_size,
input_feature_key=self._input_feature_key,
use_deprecated_input_fn=self._use_deprecated_input_fn)
except RuntimeError:
logging.info("Skipping exporting for the same step.")
示例3: _maybe_export
# 需要導入模塊: from tensorflow.python.estimator import estimator [as 別名]
# 或者: from tensorflow.python.estimator.estimator import Estimator [as 別名]
def _maybe_export(self, eval_result, checkpoint_path=None):
"""Export the Estimator using export_fn, if defined."""
export_dir_base = os.path.join(
compat.as_bytes(self._estimator.model_dir),
compat.as_bytes("export"))
export_results = []
for strategy in self._export_strategies:
export_results.append(
strategy.export(
self._estimator,
os.path.join(
compat.as_bytes(export_dir_base),
compat.as_bytes(strategy.name)),
checkpoint_path=checkpoint_path,
eval_result=eval_result))
return export_results
示例4: test
# 需要導入模塊: from tensorflow.python.estimator import estimator [as 別名]
# 或者: from tensorflow.python.estimator.estimator import Estimator [as 別名]
def test(self):
"""Tests training, evaluating and exporting the estimator for a single step.
Returns:
The result of the `evaluate` call to the `Estimator`.
"""
self._call_train(input_fn=self._train_input_fn,
steps=1,
hooks=self._train_monitors)
eval_result = self._call_evaluate(input_fn=self._eval_input_fn,
steps=1,
metrics=self._eval_metrics,
name="one_pass")
_ = self._maybe_export(eval_result)
return eval_result
示例5: _call_train
# 需要導入模塊: from tensorflow.python.estimator import estimator [as 別名]
# 或者: from tensorflow.python.estimator.estimator import Estimator [as 別名]
def _call_train(self, _sentinel=None, # pylint: disable=invalid-name,
input_fn=None, steps=None, hooks=None, max_steps=None):
if _sentinel is not None:
raise ValueError("_call_train should be called with keyword args only")
# Estimator in core cannot work with monitors. We need to convert them
# to hooks. For Estimator in contrib, it is converted internally. So, it is
# safe to convert for both cases.
hooks = monitors.replace_monitors_with_hooks(hooks, self._estimator)
if self._core_estimator_used:
return self._estimator.train(input_fn=input_fn,
steps=steps,
max_steps=max_steps,
hooks=hooks)
else:
return self._estimator.fit(input_fn=input_fn,
steps=steps,
max_steps=max_steps,
monitors=hooks)
示例6: _call_evaluate
# 需要導入模塊: from tensorflow.python.estimator import estimator [as 別名]
# 或者: from tensorflow.python.estimator.estimator import Estimator [as 別名]
def _call_evaluate(self, _sentinel=None, # pylint: disable=invalid-name,
input_fn=None, steps=None, metrics=None, name=None,
checkpoint_path=None, hooks=None):
if _sentinel is not None:
raise ValueError("_call_evaluate should be called with keyword args only")
if self._core_estimator_used:
if metrics is not None:
raise ValueError(
"`eval_metrics` must be `None` with `tf.estimator.Estimator`")
return self._estimator.evaluate(input_fn=input_fn,
steps=steps,
name=name,
checkpoint_path=checkpoint_path,
hooks=hooks)
else:
return self._estimator.evaluate(input_fn=input_fn,
steps=steps,
metrics=metrics,
name=name,
checkpoint_path=checkpoint_path,
hooks=hooks)
示例7: __init__
# 需要導入模塊: from tensorflow.python.estimator import estimator [as 別名]
# 或者: from tensorflow.python.estimator.estimator import Estimator [as 別名]
def __init__(self, id, args, worker_address, sink_address):
super().__init__()
self.model_dir = args.model_dir
self.config_fp = os.path.join(self.model_dir, 'bert_config.json')
self.checkpoint_fp = os.path.join(self.model_dir, 'bert_model.ckpt')
self.vocab_fp = os.path.join(args.model_dir, 'vocab.txt')
self.tokenizer = tokenization.FullTokenizer(vocab_file=self.vocab_fp)
self.max_seq_len = args.max_seq_len
self.worker_id = id
self.daemon = True
self.model_fn = model_fn_builder(
bert_config=modeling.BertConfig.from_json_file(self.config_fp),
init_checkpoint=self.checkpoint_fp,
pooling_strategy=args.pooling_strategy,
pooling_layer=args.pooling_layer
)
os.environ['CUDA_VISIBLE_DEVICES'] = str(self.worker_id)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = args.gpu_memory_fraction
self.estimator = Estimator(self.model_fn, config=RunConfig(session_config=config))
self.exit_flag = multiprocessing.Event()
self.logger = set_logger('WORKER-%d' % self.worker_id)
self.worker_address = worker_address
self.sink_address = sink_address
示例8: _increase_eval_step_op
# 需要導入模塊: from tensorflow.python.estimator import estimator [as 別名]
# 或者: from tensorflow.python.estimator.estimator import Estimator [as 別名]
def _increase_eval_step_op(iterations_per_loop):
"""Returns an op to increase the eval step for TPU evaluation.
Args:
iterations_per_loop: Tensor. The number of eval steps running in TPU system
before returning to CPU host for each `Session.run`.
Returns:
An operation
"""
eval_step = evaluation._get_or_create_eval_step() # pylint: disable=protected-access
# Estimator evaluate increases 1 by default. So, we increase the difference.
return state_ops.assign_add(
eval_step,
math_ops.cast(iterations_per_loop - 1, dtype=eval_step.dtype),
use_locking=True)
示例9: __init__
# 需要導入模塊: from tensorflow.python.estimator import estimator [as 別名]
# 或者: from tensorflow.python.estimator.estimator import Estimator [as 別名]
def __init__(self, input_fn, batch_axis, ctx):
"""Constructor.
Args:
input_fn: input fn for train or eval.
batch_axis: A python tuple of int values describing how each tensor
produced by the Estimator `input_fn` should be split across the TPU
compute shards.
ctx: A `_InternalTPUContext` instance with mode.
Raises:
ValueError: If both `sharded_features` and `num_cores` are `None`.
"""
self._inputs_structure_recorder = _InputPipeline.InputsStructureRecorder(
ctx.input_partition_dims)
self._sharded_per_core = ctx.is_input_sharded_per_core()
self._input_fn = input_fn
self._infeed_queue = None
self._ctx = ctx
self._batch_axis = batch_axis
示例10: _convert_train_steps_to_hooks
# 需要導入模塊: from tensorflow.python.estimator import estimator [as 別名]
# 或者: from tensorflow.python.estimator.estimator import Estimator [as 別名]
def _convert_train_steps_to_hooks(self, steps, max_steps):
with self._ctx.with_mode(model_fn_lib.ModeKeys.TRAIN) as ctx:
if ctx.is_running_on_cpu():
return super(TPUEstimator, self)._convert_train_steps_to_hooks(
steps, max_steps)
# On TPU.
if steps is None and max_steps is None:
raise ValueError(
'For TPU training, one of `steps` or `max_steps` must be set. '
'Cannot be both `None`.')
# Estimator.train has explicit positiveness check.
if steps is not None:
util_lib.check_positive_integer(steps, 'Train steps')
if max_steps is not None:
util_lib.check_positive_integer(max_steps, 'Train max_steps')
return [
_TPUStopAtStepHook(self._iterations_per_training_loop, steps, max_steps)
]
示例11: _increase_eval_step_op
# 需要導入模塊: from tensorflow.python.estimator import estimator [as 別名]
# 或者: from tensorflow.python.estimator.estimator import Estimator [as 別名]
def _increase_eval_step_op(iterations_per_loop):
"""Returns an op to increase the eval step for TPU evaluation.
Args:
iterations_per_loop: Tensor. The number of eval steps running in TPU
system before returning to CPU host for each `Session.run`.
Returns:
An operation
"""
eval_step = evaluation._get_or_create_eval_step() # pylint: disable=protected-access
# Estimator evaluate increases 1 by default. So, we increase the difference.
return state_ops.assign_add(
eval_step,
math_ops.cast(iterations_per_loop - 1, dtype=eval_step.dtype),
use_locking=True)
示例12: every_n_step_end
# 需要導入模塊: from tensorflow.python.estimator import estimator [as 別名]
# 或者: from tensorflow.python.estimator.estimator import Estimator [as 別名]
def every_n_step_end(self, step, outputs):
super(ExportMonitor, self).every_n_step_end(step, outputs)
try:
if isinstance(self._estimator, core_estimator.Estimator):
raise ValueError(
"ExportMonitor does not support `tf.estimator.Estimator. `. "
"Please pass an ExportStrategy to Experiment instead.")
self._last_export_dir = self._estimator.export(
self.export_dir,
exports_to_keep=self.exports_to_keep,
signature_fn=self.signature_fn,
input_fn=self._input_fn,
default_batch_size=self._default_batch_size,
input_feature_key=self._input_feature_key,
use_deprecated_input_fn=self._use_deprecated_input_fn)
except RuntimeError:
# Currently we are not syncronized with saving checkpoints, which leads to
# runtime errors when we are calling export on the same global step.
# Exports depend on saved checkpoints for constructing the graph and
# getting the global step from the graph instance saved in the checkpoint.
# If the checkpoint is stale with respect to current step, the global step
# is taken to be the last saved checkpoint's global step and exporter
# doesn't export the same checkpoint again with the following error.
logging.info("Skipping exporting because the existing checkpoint has "
"already been exported. "
"Consider exporting less frequently.")
示例13: replace_monitors_with_hooks
# 需要導入模塊: from tensorflow.python.estimator import estimator [as 別名]
# 或者: from tensorflow.python.estimator.estimator import Estimator [as 別名]
def replace_monitors_with_hooks(monitors_or_hooks, estimator):
"""Wraps monitors with a hook.
`Monitor` is deprecated in favor of `SessionRunHook`. If you're using a
monitor, you can wrap it with a hook using function. It is recommended to
implement hook version of your monitor.
Args:
monitors_or_hooks: A `list` may contain both monitors and hooks.
estimator: An `Estimator` that monitor will be used with.
Returns:
Returns a list of hooks. If there is any monitor in the given list, it is
replaced by a hook.
"""
monitors_or_hooks = monitors_or_hooks or []
hooks = [
m for m in monitors_or_hooks
if isinstance(m, session_run_hook.SessionRunHook)
]
deprecated_monitors = [
m for m in monitors_or_hooks
if not isinstance(m, session_run_hook.SessionRunHook)
]
if not estimator.config.is_chief:
# Prune list of monitor to the ones runnable on all workers.
deprecated_monitors = [
m for m in deprecated_monitors if m.run_on_all_workers
]
# Setup monitors.
for monitor in deprecated_monitors:
monitor.set_estimator(estimator)
if deprecated_monitors:
hooks.append(RunHookAdapterForMonitors(deprecated_monitors))
return hooks
示例14: get_estimator
# 需要導入模塊: from tensorflow.python.estimator import estimator [as 別名]
# 或者: from tensorflow.python.estimator.estimator import Estimator [as 別名]
def get_estimator(self, tf):
from tensorflow.python.estimator.estimator import Estimator
from tensorflow.python.estimator.run_config import RunConfig
from tensorflow.python.estimator.model_fn import EstimatorSpec
def model_fn(features, labels, mode, params):
with tf.gfile.GFile(self.graph_path, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
input_names = ['input_ids', 'input_mask', 'input_type_ids']
output = tf.import_graph_def(graph_def,
input_map={k + ':0': features[k] for k in input_names},
return_elements=['final_encodes:0'])
return EstimatorSpec(mode=mode, predictions={
'client_id': features['client_id'],
'encodes': output[0]
})
config = tf.ConfigProto(device_count={'GPU': 0 if self.device_id < 0 else 1})
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = self.gpu_memory_fraction
config.log_device_placement = False
# session-wise XLA doesn't seem to work on tf 1.10
# if args.xla:
# config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1
return Estimator(model_fn=model_fn, config=RunConfig(session_config=config))
示例15: export_estimator_savedmodel
# 需要導入模塊: from tensorflow.python.estimator import estimator [as 別名]
# 或者: from tensorflow.python.estimator.estimator import Estimator [as 別名]
def export_estimator_savedmodel(estimator,
export_dir_base,
serving_input_receiver_fn,
assets_extra=None,
as_text=False,
checkpoint_path=None,
strip_default_attrs=False):
"""Export `Estimator` trained model for TPU inference.
Args:
estimator: `Estimator` with which model has been trained.
export_dir_base: A string containing a directory in which to create
timestamped subdirectories containing exported SavedModels.
serving_input_receiver_fn: A function that takes no argument and returns a
`ServingInputReceiver` or `TensorServingInputReceiver`.
assets_extra: A dict specifying how to populate the assets.extra directory
within the exported SavedModel, or `None` if no extra assets are needed.
as_text: whether to write the SavedModel proto in text format.
checkpoint_path: The checkpoint path to export. If `None` (the default),
the most recent checkpoint found within the model directory is chosen.
strip_default_attrs: Boolean. If `True`, default-valued attributes will be
removed from the NodeDefs.
Returns:
The string path to the exported directory.
"""
# `TPUEstimator` requires `tpu_config.RunConfig`, so we cannot use
# `estimator.config`.
config = tpu_config.RunConfig(model_dir=estimator.model_dir)
est = TPUEstimator(
estimator._model_fn, # pylint: disable=protected-access
config=config,
params=estimator.params,
use_tpu=True,
train_batch_size=2048, # Does not matter.
eval_batch_size=2048, # Does not matter.
)
return est.export_savedmodel(export_dir_base, serving_input_receiver_fn,
assets_extra, as_text, checkpoint_path,
strip_default_attrs)