當前位置: 首頁>>代碼示例>>Python>>正文


Python context.in_graph_mode方法代碼示例

本文整理匯總了Python中tensorflow.python.eager.context.in_graph_mode方法的典型用法代碼示例。如果您正苦於以下問題:Python context.in_graph_mode方法的具體用法?Python context.in_graph_mode怎麽用?Python context.in_graph_mode使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.eager.context的用法示例。


在下文中一共展示了context.in_graph_mode方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _create_slots

# 需要導入模塊: from tensorflow.python.eager import context [as 別名]
# 或者: from tensorflow.python.eager.context import in_graph_mode [as 別名]
def _create_slots(self, var_list):
        first_var = min(var_list, key=lambda x: x.name)

        create_new = self._beta1_power is None
        if not create_new and context.in_graph_mode():
            create_new = (self._beta1_power.graph is not first_var.graph)

        if create_new:
            with ops.colocate_with(first_var):
                self._beta1_power = variable_scope.variable(
                    self._beta1, name="beta1_power", trainable=False)
                self._beta2_power = variable_scope.variable(
                    self._beta2, name="beta2_power", trainable=False)
        # Create slots for the first and second moments.
        for v in var_list:
            self._zeros_slot(v, "m", self._name)
            self._zeros_slot(v, "v", self._name)
            self._zeros_slot(v, "vhat", self._name) 
開發者ID:imsb-uke,項目名稱:scGAN,代碼行數:20,代碼來源:AMSGrad.py

示例2: _create_slots

# 需要導入模塊: from tensorflow.python.eager import context [as 別名]
# 或者: from tensorflow.python.eager.context import in_graph_mode [as 別名]
def _create_slots(self, var_list):
        first_var = min(var_list, key=lambda x: x.name)

        create_new = self._beta1_power is None
        if not create_new and context.in_graph_mode():
            create_new = (self._beta1_power.graph is not first_var.graph)

        if create_new:
            with ops.colocate_with(first_var):
                self._beta1_power = variable_scope.variable(self._beta1, name="beta1_power", trainable=False)
                self._beta2_power = variable_scope.variable(self._beta2, name="beta2_power", trainable=False)
        # Create slots for the first and second moments.
        for v in var_list :
            self._zeros_slot(v, "m", self._name)
            self._zeros_slot(v, "v", self._name)
            self._zeros_slot(v, "vhat", self._name) 
開發者ID:luochuwei,項目名稱:Custom-Optimizer-in-TensorFlow,代碼行數:18,代碼來源:AMSGrad.py

示例3: _create_slots

# 需要導入模塊: from tensorflow.python.eager import context [as 別名]
# 或者: from tensorflow.python.eager.context import in_graph_mode [as 別名]
def _create_slots(self, var_list):
        first_var = min(var_list, key=lambda x: x.name)
        if StrictVersion(tf.__version__) >= StrictVersion('1.10.0'):
            graph = None if context.executing_eagerly() else ops.get_default_graph()
        else:
            graph = ops.get_default_graph()
        create_new = self._get_non_slot_variable("beta1_power", graph) is None
        if not create_new and context.in_graph_mode():
            create_new = (self._get_non_slot_variable("beta1_power", graph).graph is not first_var.graph)

        if create_new:
            self._create_non_slot_variable(initial_value=self._beta1,
                                           name="beta1_power",
                                           colocate_with=first_var)
            self._create_non_slot_variable(initial_value=self._beta2,
                                           name="beta2_power",
                                           colocate_with=first_var)
            self._create_non_slot_variable(initial_value=self._gamma,
                                           name="gamma_multi",
                                           colocate_with=first_var)
        # Create slots for the first and second moments.
        for v in var_list :
            self._zeros_slot(v, "m", self._name)
            self._zeros_slot(v, "v", self._name)
            self._zeros_slot(v, "vhat", self._name) 
開發者ID:kerlomz,項目名稱:captcha_trainer,代碼行數:27,代碼來源:AdaBound.py

示例4: _create_slots

# 需要導入模塊: from tensorflow.python.eager import context [as 別名]
# 或者: from tensorflow.python.eager.context import in_graph_mode [as 別名]
def _create_slots(self, var_list):
        first_var = min(var_list, key=lambda x: x.name)

        create_new = self._beta1_power is None
        if not create_new and context.in_graph_mode():
            create_new = (self._beta1_power.graph is not first_var.graph)

        if create_new:
            with ops.colocate_with(first_var):
                self._beta1_power = variable_scope.variable(self._beta1, name="beta1_power", trainable=False)
                self._beta2_power = variable_scope.variable(self._beta2, name="beta2_power", trainable=False)
        # Create slots for the first and second moments.
        for v in var_list:
            self._zeros_slot(v, "m", self._name)
            self._zeros_slot(v, "v", self._name)
            self._zeros_slot(v, "vhat", self._name) 
開發者ID:liyaguang,項目名稱:DCRNN,代碼行數:18,代碼來源:AMSGrad.py

示例5: _create_slots

# 需要導入模塊: from tensorflow.python.eager import context [as 別名]
# 或者: from tensorflow.python.eager.context import in_graph_mode [as 別名]
def _create_slots(self, var_list):
        first_var = min(var_list, key=lambda x: x.name)

        graph = None if context.executing_eagerly() else ops.get_default_graph()
        create_new = self._get_non_slot_variable("beta1_power", graph) is None
        if not create_new and context.in_graph_mode():
            create_new = (self._get_non_slot_variable("beta1_power", graph).graph is not first_var.graph)

        if create_new:
            self._create_non_slot_variable(initial_value=self._beta1,
                                           name="beta1_power",
                                           colocate_with=first_var)
            self._create_non_slot_variable(initial_value=self._beta2,
                                           name="beta2_power",
                                           colocate_with=first_var)
            self._create_non_slot_variable(initial_value=self._gamma,
                                           name="gamma_multi",
                                           colocate_with=first_var)
        # Create slots for the first and second moments.
        for v in var_list :
            self._zeros_slot(v, "m", self._name)
            self._zeros_slot(v, "v", self._name)
            self._zeros_slot(v, "vhat", self._name) 
開發者ID:taki0112,項目名稱:AdaBound-Tensorflow,代碼行數:25,代碼來源:AdaBound.py

示例6: __init__

# 需要導入模塊: from tensorflow.python.eager import context [as 別名]
# 或者: from tensorflow.python.eager.context import in_graph_mode [as 別名]
def __init__(self, dtype, shape, accumulator_ref):
    """Creates a new ConditionalAccumulator.

    Args:
      dtype: Datatype of the accumulated gradients.
      shape: Shape of the accumulated gradients.
      accumulator_ref: A handle to the conditional accumulator, created by sub-
        classes
    """
    self._dtype = dtype
    if shape is not None:
      self._shape = tensor_shape.TensorShape(shape)
    else:
      self._shape = tensor_shape.unknown_shape()
    self._accumulator_ref = accumulator_ref
    if context.in_graph_mode():
      self._name = self._accumulator_ref.op.name.split("/")[-1]
    else:
      self._name = context.context().scope_name 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:21,代碼來源:data_flow_ops.py

示例7: identity

# 需要導入模塊: from tensorflow.python.eager import context [as 別名]
# 或者: from tensorflow.python.eager.context import in_graph_mode [as 別名]
def identity(input, name=None):  # pylint: disable=redefined-builtin
  r"""Return a tensor with the same shape and contents as input.

  Args:
    input: A `Tensor`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor`. Has the same type as `input`.
  """
  if context.in_graph_mode():
    return gen_array_ops.identity(input, name=name)
  else:
    if context.context().device_name != input.device:
      return input._copy()  # pylint: disable=protected-access
    return input


# pylint: disable=redefined-builtin,protected-access 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:21,代碼來源:array_ops.py

示例8: _flatten_outer_dims

# 需要導入模塊: from tensorflow.python.eager import context [as 別名]
# 或者: from tensorflow.python.eager.context import in_graph_mode [as 別名]
def _flatten_outer_dims(logits):
  """Flattens logits' outer dimensions and keep its last dimension."""
  rank = array_ops.rank(logits)
  last_dim_size = array_ops.slice(
      array_ops.shape(logits), [math_ops.subtract(rank, 1)], [1])
  output = array_ops.reshape(logits, array_ops.concat([[-1], last_dim_size], 0))

  # Set output shape if known.
  if context.in_graph_mode():
    shape = logits.get_shape()
    if shape is not None and shape.dims is not None:
      shape = shape.as_list()
      product = 1
      product_valid = True
      for d in shape[:-1]:
        if d is None:
          product_valid = False
          break
        else:
          product *= d
      if product_valid:
        output_shape = [product, shape[-1]]
        output.set_shape(output_shape)

  return output 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:27,代碼來源:nn_ops.py

示例9: _TileGrad

# 需要導入模塊: from tensorflow.python.eager import context [as 別名]
# 或者: from tensorflow.python.eager.context import in_graph_mode [as 別名]
def _TileGrad(op, grad):
  """Sum reduces grad along the tiled dimensions."""
  assert isinstance(grad, ops.Tensor)
  input_shape = array_ops.shape(op.inputs[0])
  # We interleave multiples and input_shape to get split_shape,
  # reshape grad to split_shape, and reduce along all even
  # dimensions (the tiled dimensions) to get the result
  # with shape input_shape.  For example
  #   input_shape = [20, 30, 40]
  #   multiples = [2, 3, 4]
  #   split_shape = [2, 20, 3, 30, 4, 40]
  #   axes = [0, 2, 4]
  split_shape = array_ops.reshape(
      array_ops.transpose(array_ops.stack([op.inputs[1], input_shape])), [-1])
  axes = math_ops.range(0, array_ops.size(split_shape), 2)
  input_grad = math_ops.reduce_sum(array_ops.reshape(grad, split_shape), axes)
  # Fix shape inference
  if context.in_graph_mode():
    input_grad.set_shape(op.inputs[0].get_shape())
  return [input_grad, None] 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:22,代碼來源:array_grad.py

示例10: __init__

# 需要導入模塊: from tensorflow.python.eager import context [as 別名]
# 或者: from tensorflow.python.eager.context import in_graph_mode [as 別名]
def __init__(self, table_ref, default_value, initializer):
    """Construct a table object from a table reference.

    If requires a table initializer object (subclass of `TableInitializerBase`).
    It provides the table key and value types, as well as the op to initialize
    the table. The caller is responsible to execute the initialization op.

    Args:
      table_ref: The table reference, i.e. the output of the lookup table ops.
      default_value: The value to use if a key is missing in the table.
      initializer: The table initializer to use.
    """
    if context.in_graph_mode():
      name = table_ref.op.name.split("/")[-1]
    else:
      name = context.context().scope_name
    super(InitializableLookupTableBase,
          self).__init__(initializer.key_dtype, initializer.value_dtype,
                         name)
    self._table_ref = table_ref
    self._default_value = ops.convert_to_tensor(
        default_value, dtype=self._value_dtype)
    self._default_value.get_shape().merge_with(tensor_shape.scalar())
    self._init = initializer.initialize(self) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:26,代碼來源:lookup_ops.py

示例11: _create_slots

# 需要導入模塊: from tensorflow.python.eager import context [as 別名]
# 或者: from tensorflow.python.eager.context import in_graph_mode [as 別名]
def _create_slots(self, var_list):
    # Create the beta1 and beta2 accumulators on the same device as the first
    # variable. Sort the var_list to make sure this device is consistent across
    # workers (these need to go on the same PS, otherwise some updates are
    # silently ignored).
    first_var = min(var_list, key=lambda x: x.name)

    create_new = self._beta1_power is None
    if not create_new and context.in_graph_mode():
      create_new = (self._beta1_power.graph is not first_var.graph)

    if create_new:
      with ops.colocate_with(first_var):
        self._beta1_power = variable_scope.variable(self._beta1,
                                                    name="beta1_power",
                                                    trainable=False)
        self._beta2_power = variable_scope.variable(self._beta2,
                                                    name="beta2_power",
                                                    trainable=False)
    # Create slots for the first and second moments.
    for v in var_list:
      self._zeros_slot(v, "m", self._name)
      self._zeros_slot(v, "v", self._name) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:25,代碼來源:adam.py

示例12: control_dependencies

# 需要導入模塊: from tensorflow.python.eager import context [as 別名]
# 或者: from tensorflow.python.eager.context import in_graph_mode [as 別名]
def control_dependencies(control_inputs):
  """Wrapper for `Graph.control_dependencies()` using the default graph.

  See @{tf.Graph.control_dependencies}
  for more details.

  Args:
    control_inputs: A list of `Operation` or `Tensor` objects which
      must be executed or computed before running the operations
      defined in the context.  Can also be `None` to clear the control
      dependencies.

  Returns:
   A context manager that specifies control dependencies for all
   operations constructed within the context.
  """
  if context.in_graph_mode():
    return get_default_graph().control_dependencies(control_inputs)
  else:
    return _NullContextmanager() 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:22,代碼來源:ops.py

示例13: add_to_graph

# 需要導入模塊: from tensorflow.python.eager import context [as 別名]
# 或者: from tensorflow.python.eager.context import in_graph_mode [as 別名]
def add_to_graph(self, g):
    """Adds this function into the graph g."""
    self._create_definition_if_needed()

    # Adds this function into 'g'.
    # pylint: disable=protected-access
    if context.in_graph_mode():
      g._add_function(self)
    else:
      context.context().add_function_def(self.definition)
    # pylint: enable=protected-access

    # Ensures related sub-routines are defined in 'g', too.
    for f in self._sub_functions.values():
      f.add_to_graph(g)

    # Adds its gradient function, too.
    if self._grad_func:
      self._grad_func.add_to_graph(g) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:21,代碼來源:function.py

示例14: _create_slots

# 需要導入模塊: from tensorflow.python.eager import context [as 別名]
# 或者: from tensorflow.python.eager.context import in_graph_mode [as 別名]
def _create_slots(self, var_list):
        # Create the beta1 and beta2 accumulators on the same device as the first
        # variable. Sort the var_list to make sure this device is consistent across
        # workers (these need to go on the same PS, otherwise some updates are
        # silently ignored).
        first_var = min(var_list, key=lambda x: x.name)

        create_new = self._iterations is None
        if not create_new and context.in_graph_mode():
            create_new = (self._iterations.graph is not first_var.graph)

        if create_new:
            with ops.colocate_with(first_var):
                self._beta1_power = variable_scope.variable(self._beta1,
                                                            name="beta1_power",
                                                            trainable=False)
                self._beta2_power = variable_scope.variable(self._beta2,
                                                            name="beta2_power",
                                                            trainable=False)
                self._iterations = variable_scope.variable(0.,
                                                           name="iterations",
                                                           trainable=False)
                self._m_schedule = variable_scope.variable(1.,
                                                           name="m_schedule",
                                                           trainable=False)
        # Create slots for the first and second moments.
        for v in var_list:
            self._zeros_slot(v, "m", self._name)
            self._zeros_slot(v, "v", self._name) 
開發者ID:ChenglongChen,項目名稱:tensorflow-XNN,代碼行數:31,代碼來源:optimizer.py

示例15: __op

# 需要導入模塊: from tensorflow.python.eager import context [as 別名]
# 或者: from tensorflow.python.eager.context import in_graph_mode [as 別名]
def __op(self, kernel, inputs, shape):
        if len(shape) > 2:
            # Broadcasting is required for the inputs.
            outputs = tf.tensordot(inputs, kernel, [[len(shape) - 1],[0]])
            # Reshape the output back to the original ndim of the input.
            # if context.in_graph_mode():
            # for tf > 1.5.0
            if not context.executing_eagerly():
                output_shape = shape[:-1] + [self.units]
                outputs.set_shape(output_shape)
        else:
            outputs = tf.matmul(inputs, kernel)

        return outputs 
開發者ID:nouhadziri,項目名稱:THRED,代碼行數:16,代碼來源:taware_layer.py


注:本文中的tensorflow.python.eager.context.in_graph_mode方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。