當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.py_function方法代碼示例

本文整理匯總了Python中tensorflow.py_function方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.py_function方法的具體用法?Python tensorflow.py_function怎麽用?Python tensorflow.py_function使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.py_function方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: yolo_nms

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import py_function [as 別名]
def yolo_nms(outputs, anchors, masks, num_classes, iou_threshold=0.6, score_threshold=0.15):
    boxes, confs, classes = [], [], []

    for o in outputs:
        boxes.append(tf.reshape(o[0], (tf.shape(o[0])[0], -1, tf.shape(o[0])[-1])))
        confs.append(tf.reshape(o[1], (tf.shape(o[0])[0], -1, tf.shape(o[1])[-1])))
        classes.append(tf.reshape(o[2], (tf.shape(o[0])[0], -1, tf.shape(o[2])[-1])))
    boxes = tf.concat(boxes, axis=1)
    confs = tf.concat(confs, axis=1)
    class_probs = tf.concat(classes, axis=1)
    box_scores = confs * class_probs
    mask = box_scores >= score_threshold
    mask = tf.reduce_any(mask, axis=-1)

    class_boxes = tf.boolean_mask(boxes, mask)
    class_boxes = tf.reshape(class_boxes, (tf.shape(boxes)[0], -1, 4))
    class_box_scores = tf.boolean_mask(box_scores, mask)
    class_box_scores = tf.reshape(class_box_scores, (tf.shape(boxes)[0], -1, num_classes))

    class_boxes, class_box_scores = tf.py_function(func=batched_nms,
                                                   inp=[class_boxes, class_box_scores, num_classes, iou_threshold],
                                                   Tout=[tf.float32, tf.float32])
    classes = tf.argmax(class_box_scores, axis=-1)

    return class_boxes, class_box_scores, classes 
開發者ID:akkaze,項目名稱:tf2-yolo3,代碼行數:27,代碼來源:models.py

示例2: step

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import py_function [as 別名]
def step(self, actions, name=None):
        """take 1-step in all environments.

        :param tf.Tensor action: float32[batch_size, dim_action]
        :param name: Operator名
        :rtype: (tf.Tensor, tf.Tensor, tf.Tensor)
        :return:
           (obs, reward, done)
          obs = [batch_size, dim_obs]
          reward = [batch_size]
          done = [batch_size]
          reach_limit = [batch_size] : whether each environment reached time limit or not.
        """
        assert isinstance(actions, tf.Tensor)
        # with tf.variable_scope(name, default_name="MultiStep"):
        obs, reward, done = tf.py_function(
            func=self.py_step,
            inp=[actions],
            Tout=[tf.float32, tf.float32, tf.float32],
            name="py_step")
        obs.set_shape((self.batch_size,) + self.observation_shape)
        reward.set_shape((self.batch_size,))
        done.set_shape((self.batch_size,))

        return obs, reward, done, None 
開發者ID:keiohta,項目名稱:tf2rl,代碼行數:27,代碼來源:multi_thread_env.py

示例3: _tokenize_tensor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import py_function [as 別名]
def _tokenize_tensor(self, text):
    """Tokenizes a tensor.

    When not overriden, this default implementation calls the string-based
    tokenization.

    Args:
      text: A 1-D string ``tf.Tensor``.

    Returns:
      A 1-D string ``tf.Tensor``.
    """
    def _python_wrapper(string_t):
      string = tf.compat.as_text(string_t.numpy())
      tokens = self._tokenize_string(string)
      return tf.constant(tokens, dtype=tf.string)
    tokens = tf.py_function(_python_wrapper, [text], tf.string)
    tokens.set_shape([None])
    return tokens 
開發者ID:OpenNMT,項目名稱:OpenNMT-tf,代碼行數:21,代碼來源:tokenizer.py

示例4: _detokenize_tensor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import py_function [as 別名]
def _detokenize_tensor(self, tokens):
    """Detokenizes tokens.

    When not overriden, this default implementation calls the string-based
    detokenization.

    Args:
      tokens: A 1-D ``tf.Tensor``.

    Returns:
      A 0-D string ``tf.Tensor``.
    """
    def _python_wrapper(tokens_t):
      tokens = [tf.compat.as_text(s) for s in tokens_t.numpy()]
      string = self._detokenize_string(tokens)
      return tf.constant(string)
    text = tf.py_function(_python_wrapper, [tokens], tf.string)
    text.set_shape([])
    return text 
開發者ID:OpenNMT,項目名稱:OpenNMT-tf,代碼行數:21,代碼來源:tokenizer.py

示例5: test_shutdown_while_in_call

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import py_function [as 別名]
def test_shutdown_while_in_call(self, dim, batched):
    address = self.get_unix_address()
    server = ops.Server([address])

    is_waiting = threading.Event()

    @tf.function(input_signature=[tf.TensorSpec(dim, tf.int32)])
    def foo(x):
      tf.py_function(is_waiting.set, [], [])
      tf.py_function(time.sleep, [1], [])
      return x + 1

    server.bind(foo, batched=batched)
    server.start()

    client = ops.Client(address)
    with futures.ThreadPoolExecutor(max_workers=1) as executor:
      f = executor.submit(client.foo, 42)
      is_waiting.wait()
      server.shutdown()
      with self.assertRaisesRegexp(tf.errors.UnavailableError, 'server closed'):
        f.result() 
開發者ID:google-research,項目名稱:seed_rl,代碼行數:24,代碼來源:ops_test.py

示例6: test_not_fully_specified_outputs2

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import py_function [as 別名]
def test_not_fully_specified_outputs2(self):
    address = self.get_unix_address()
    server = ops.Server([address])

    @tf.function(input_signature=[tf.TensorSpec([1], tf.int32)])
    def foo(x):
      result, = tf.py_function(lambda x: x, [x], [tf.int32])
      result.set_shape([None])
      return result

    server.bind(foo, batched=True)
    server.start()

    client = ops.Client(address)
    self.assertAllEqual(42, client.foo(42))
    server.shutdown() 
開發者ID:google-research,項目名稱:seed_rl,代碼行數:18,代碼來源:ops_test.py

示例7: masked_q_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import py_function [as 別名]
def masked_q_loss(data, y_pred):
			"""Computes the MSE between the Q-values of the actions that were taken and	the cumulative discounted
			rewards obtained after taking those actions. Updates trace priorities if using PrioritizedExperienceReplay.
			"""
			action_batch, target_qvals = data[:, 0], data[:, 1]
			seq = tf.cast(tf.range(0, tf.shape(action_batch)[0]), tf.int32)
			action_idxs = tf.transpose(tf.stack([seq, tf.cast(action_batch, tf.int32)]))
			qvals = tf.gather_nd(y_pred, action_idxs)
			if isinstance(self.memory, memory.PrioritizedExperienceReplay):
				def update_priorities(_qvals, _target_qvals, _traces_idxs):
					"""Computes the TD error and updates memory priorities."""
					td_error = np.abs((_target_qvals - _qvals).numpy())
					_traces_idxs = (tf.cast(_traces_idxs, tf.int32)).numpy()
					self.memory.update_priorities(_traces_idxs, td_error)
					return _qvals
				qvals = tf.py_function(func=update_priorities, inp=[qvals, target_qvals, data[:,2]], Tout=tf.float32)
			return tf.keras.losses.mse(qvals, target_qvals) 
開發者ID:danaugrs,項目名稱:huskarl,代碼行數:19,代碼來源:dqn.py

示例8: set_tags

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import py_function [as 別名]
def set_tags(self, **tags):
    keys, values = zip(*sorted(tags.items(), key=lambda x: x[0]))
    def inner(*values):
      parsed = []
      for index, value in enumerate(values):
        if value.dtype == tf.string:
          parsed.append(value.numpy().decode('utf-8'))
        elif value.dtype in (tf.float32, tf.float64):
          parsed.append(float(value.numpy()))
        elif value.dtype in (tf.int32, tf.int64):
          parsed.append(int(value.numpy()))
        else:
          raise NotImplementedError(value.dtype)
      tags = dict(zip(keys, parsed))
      return self._metrics.set_tags(**tags)
    # String tensors in tf.py_function are only supported on CPU.
    with tf.device('/cpu:0'):
      return tf.py_function(inner, values, [], 'set_tags') 
開發者ID:google-research,項目名稱:dreamer,代碼行數:20,代碼來源:metrics.py

示例9: tf_parse_line

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import py_function [as 別名]
def tf_parse_line(line, data_dir, split_names):

    line_split = tf.strings.split(line, ' ')

    audio_fn = line_split[0]
    transcription = tf.py_function(
        lambda x: b' '.join(x.numpy()).decode('utf8'),
        inp=[line_split[1:]],
        Tout=tf.string)

    speaker_id, chapter_id, _ = tf.unstack(tf.strings.split(audio_fn, '-'), 3)

    all_fps = tf.map_fn(
        lambda split_name: tf.strings.join([data_dir, split_name, speaker_id, chapter_id, audio_fn], '/') + '.flac',
        tf.constant(split_names))

    audio_filepath_idx = tf.where(
        tf.map_fn(tf_file_exists, all_fps, dtype=tf.bool))[0][0]
    audio_filepath = all_fps[audio_filepath_idx]

    audio, sr = tf_load_audio(audio_filepath)

    return audio, sr, transcription 
開發者ID:noahchalifour,項目名稱:rnnt-speech-recognition,代碼行數:25,代碼來源:librispeech.py

示例10: _build_mwf_output_waveform

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import py_function [as 別名]
def _build_mwf_output_waveform(self):
        """ Perform separation with multichannel Wiener Filtering using Norbert.
        Note: multichannel Wiener Filtering is not coded in Tensorflow and thus
        may be quite slow.

        :returns: dictionary of separated waveforms (key: instrument name,
            value: estimated waveform of the instrument)
        """
        import norbert  # pylint: disable=import-error
        output_dict = self.model_outputs
        x = self.stft_feature
        v = tf.stack(
            [
                pad_and_reshape(
                    output_dict[f'{instrument}_spectrogram'],
                    self._frame_length,
                    self._F)[:tf.shape(x)[0], ...]
                for instrument in self._instruments
            ],
            axis=3)
        input_args = [v, x]
        stft_function = tf.py_function(
            lambda v, x: norbert.wiener(v.numpy(), x.numpy()),
            input_args,
            tf.complex64),
        return {
            instrument: self._inverse_stft(stft_function[0][:, :, :, k])
            for k, instrument in enumerate(self._instruments)
        } 
開發者ID:deezer,項目名稱:spleeter,代碼行數:31,代碼來源:__init__.py

示例11: auc

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import py_function [as 別名]
def auc(y, p):
        return tf.py_function(roc_auc_score, (y, p), tf.double) 
開發者ID:jeongyoonlee,項目名稱:Kaggler,代碼行數:4,代碼來源:categorical.py

示例12: load_textline_dataset

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import py_function [as 別名]
def load_textline_dataset(file_pattern, size):
    dataset = tf.data.TextLineDataset(file_pattern)
    return dataset.map(lambda x: tf.py_function(func=decode_line, inp=[x, size], Tout=(tf.float32, tf.float32))) 
開發者ID:akkaze,項目名稱:tf2-yolo3,代碼行數:5,代碼來源:dataset.py

示例13: test_minimize_callback

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import py_function [as 別名]
def test_minimize_callback(self):
    """Callback should run at the end of every iteration."""
    variables = np.random.uniform(low=-1.0, high=1.0, size=[1])
    saved_objective = [None]
    saved_iteration = [None]
    iteration_count = [0]

    def callback(iteration, objective_value, variables):
      del variables

      def save(iteration, objective_value):
        saved_objective[0] = objective_value
        saved_iteration[0] = iteration
        iteration_count[0] += 1

      return tf.py_function(save, [iteration, objective_value], [])

    final_objective, _ = levenberg_marquardt.minimize(
        lambda x: x, variables, max_iterations=5, callback=callback)
    final_saved_objective = tf.py_function(lambda: saved_objective[0], [],
                                           tf.float64)
    final_saved_iteration = tf.py_function(lambda: saved_iteration[0], [],
                                           tf.int32)
    final_iteration_count = tf.py_function(lambda: iteration_count[0], [],
                                           tf.int32)

    with self.subTest(name="objective_value"):
      self.assertAllClose(final_objective, final_saved_objective)

    with self.subTest(name="iterations"):
      self.assertAllEqual(final_saved_iteration, final_iteration_count) 
開發者ID:tensorflow,項目名稱:graphics,代碼行數:33,代碼來源:levenberg_marquardt_test.py

示例14: _map_function

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import py_function [as 別名]
def _map_function(self, images_path, masks_path):
        image, mask = self._parse_data(images_path, masks_path)

        def _augmentation_func(image_f, mask_f):
            if self.augment:
                if self.compose:
                    image_f, mask_f = self._corrupt_brightness(image_f, mask_f)
                    image_f, mask_f = self._corrupt_contrast(image_f, mask_f)
                    image_f, mask_f = self._corrupt_saturation(image_f, mask_f)
                    image_f, mask_f = self._crop_random(image_f, mask_f)
                    image_f, mask_f = self._flip_left_right(image_f, mask_f)
                else:
                    options = [self._corrupt_brightness,
                               self._corrupt_contrast,
                               self._corrupt_saturation,
                               self._crop_random,
                               self._flip_left_right]
                    augment_func = random.choice(options)
                    image_f, mask_f = augment_func(image_f, mask_f)

            if self.one_hot_encoding:
                if self.palette is None:
                    raise ValueError('No Palette for one-hot encoding specified in the data loader! \
                                      please specify one when initializing the loader.')
                image_f, mask_f = self._one_hot_encode(image_f, mask_f)

            image_f, mask_f = self._resize_data(image_f, mask_f)
            return image_f, mask_f
        return tf.py_function(_augmentation_func, [image, mask], [tf.float32, tf.uint8]) 
開發者ID:HasnainRaz,項目名稱:SemSegPipeline,代碼行數:31,代碼來源:dataloader.py

示例15: tf_encode

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import py_function [as 別名]
def tf_encode(self, feature, target):
        return tf.py_function(self.encode, [feature, target], [tf.int64, tf.int64]) 
開發者ID:msgi,項目名稱:nlp-journey,代碼行數:4,代碼來源:data_process.py


注:本文中的tensorflow.py_function方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。