當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.print方法代碼示例

本文整理匯總了Python中tensorflow.print方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.print方法的具體用法?Python tensorflow.print怎麽用?Python tensorflow.print使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.print方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testLoss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import print [as 別名]
def testLoss(self):
    batch_size = 2
    key_depth = 5
    val_depth = 5
    memory_size = 4
    window_size = 3
    x_depth = 5
    memory = transformer_memory.TransformerMemory(
        batch_size, key_depth, val_depth, memory_size)
    x = tf.random_uniform([batch_size, window_size, x_depth], minval=.0)
    memory_results, _, _, _ = (
        memory.pre_attention(
            tf.random_uniform([batch_size], minval=0, maxval=1, dtype=tf.int32),
            x, None, None))
    x = memory.post_attention(memory_results, x)
    with tf.control_dependencies([tf.print("x", x)]):
      is_nan = tf.reduce_any(tf.math.is_nan(x))
    with self.test_session() as session:
      session.run(tf.global_variables_initializer())
      for _ in range(100):
        is_nan_value, _ = session.run([is_nan, x])
    self.assertEqual(is_nan_value, False) 
開發者ID:yyht,項目名稱:BERT,代碼行數:24,代碼來源:transformer_memory_test.py

示例2: multiline_print

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import print [as 別名]
def multiline_print(lists):
  """Prints multiple lines of output using tf.print."""

  combined_list = []
  combined_list += lists[0]

  # We prepend newline characters to strings at the start of lines to avoid
  # the ugly space intendations that tf.print's behavior of separating
  # everything with a space would otherwise cause.
  for item in lists[1:]:
    if isinstance(item[0], str):
      combined_list += (("\n" + item[0],) + item[1:])
    else:
      combined_list += (("\n",) + item)

  return tf.print(*combined_list) 
開發者ID:tensorflow,項目名稱:kfac,代碼行數:18,代碼來源:utils.py

示例3: run_training_iteration

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import print [as 別名]
def run_training_iteration(self, sess, summary_writer, iteration_number):
        feeds = sess.run(self.training_feeds)
        feed_dict = {
            self._placeholder_vertex_features : feeds[0],
            self._placeholder_image : feeds[1],
            self._placeholder_global_features : feeds[2],
            self._placeholder_cell_adj_matrix : feeds[3],
            self._placeholder_row_adj_matrix : feeds[4],
            self._placeholder_col_adj_matrix : feeds[5],
        }
        print("Training Iteration %d:" % iteration_number)
        ops_to_run = self.graph_predicted_sampled_adj_matrices + self.graph_gt_sampled_adj_matrices + \
            self.graph_sampled_indices+ [self.graph_optimizer, self.graph_prints, self.graph_summaries_training]
        ops_result = sess.run(ops_to_run, feed_dict = feed_dict)

        summary_writer.add_summary(ops_result[-1], iteration_number) 
開發者ID:shahrukhqasim,項目名稱:TIES-2.0,代碼行數:18,代碼來源:basic_model.py

示例4: print_metrics

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import print [as 別名]
def print_metrics(metrics, step, every, name='metrics'):
  means, updates = [], []
  for key, value in metrics.items():
    key = 'metrics_{}_{}'.format(name, key)
    mean = tools.StreamingMean((), tf.float32, key)
    means.append(mean)
    updates.append(mean.submit(value))
  with tf.control_dependencies(updates):
    # message = 'step/' + '/'.join(metrics.keys()) + ' = '
    message = '{}: step/{} ='.format(name, '/'.join(metrics.keys()))
    gs = tf.train.get_or_create_global_step()
    print_metrics = tf.cond(
        tf.equal(step % every, 0),
        lambda: tf.print(message, [gs] + [mean.clear() for mean in means]),
        tf.no_op)
  return print_metrics 
開發者ID:google-research,項目名稱:planet,代碼行數:18,代碼來源:utility.py

示例5: collect_initial_episodes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import print [as 別名]
def collect_initial_episodes(config):
  items = config.random_collects.items()
  items = sorted(items, key=lambda x: x[0])
  existing = {}
  for name, params in items:
    outdir = params.save_episode_dir
    tf.gfile.MakeDirs(outdir)
    if outdir not in existing:
      existing[outdir] = len(tf.gfile.Glob(os.path.join(outdir, '*.npz')))
    if params.num_episodes <= existing[outdir]:
      existing[outdir] -= params.num_episodes
    else:
      remaining = params.num_episodes - existing[outdir]
      existing[outdir] = 0
      env_ctor = params.task.env_ctor
      print('Collecting {} initial episodes ({}).'.format(remaining, name))
      control.random_episodes(env_ctor, remaining, outdir) 
開發者ID:google-research,項目名稱:planet,代碼行數:19,代碼來源:utility.py

示例6: maybe_minimize

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import print [as 別名]
def maybe_minimize(self, condition, loss):
    # loss = tf.cond(condition, lambda: loss, float)
    update_op, grad_norm = tf.cond(
        condition,
        lambda: self.minimize(loss),
        lambda: (tf.no_op(), 0.0))
    with tf.control_dependencies([update_op]):
      summary = tf.cond(
          tf.logical_and(condition, self._log),
          lambda: self.summarize(grad_norm), str)
    if self._debug:
      # print_op = tf.print('{}_grad_norm='.format(self._name), grad_norm)
      message = 'Zero gradient norm in {} optimizer.'.format(self._name)
      assertion = lambda: tf.assert_greater(grad_norm, 0.0, message=message)
      assert_op = tf.cond(condition, assertion, tf.no_op)
      with tf.control_dependencies([assert_op]):
        summary = tf.identity(summary)
    return summary, grad_norm 
開發者ID:google-research,項目名稱:planet,代碼行數:20,代碼來源:custom_optimizer.py

示例7: gen_training_input

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import print [as 別名]
def gen_training_input(total_size, nb_feats, batch_size):
    """Generate random data for training."""
    x_np = np.random.uniform(-0.5, 0.5, size=[total_size, nb_feats])
    y_np = np.array(x_np.mean(axis=1) > 0, np.float32)
    train_set = (
        tf.data.Dataset.from_tensor_slices((x_np, y_np))
        .map(norm)
        .shuffle(buffer_size=100)
        .repeat()
        .batch(batch_size)
    )
    train_set_iterator = train_set.make_one_shot_iterator()
    x, y = train_set_iterator.get_next()
    x = tf.reshape(x, [batch_size, nb_feats])
    y = tf.reshape(y, [batch_size, 1])

    # tf.print(x, data=[x], message="x: ", summarize=6)
    return x, y 
開發者ID:tf-encrypted,項目名稱:tf-encrypted,代碼行數:20,代碼來源:data.py

示例8: evaluate

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import print [as 別名]
def evaluate(self, sess, x, y, data_owner):
        """Return the accuracy"""

        def print_accuracy(y_hat, y) -> tf.Operation:
            with tf.name_scope("print-accuracy"):
                correct_prediction = tf.equal(tf.round(y_hat), y)
                accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
                print_op = tf.print(
                    "Accuracy on {}:".format(data_owner.player_name), accuracy
                )
                return print_op

        with tf.name_scope("evaluate"):
            y_hat = self.forward(x)
            print_accuracy_op = tfe.define_output(
                data_owner.player_name, [y_hat, y], print_accuracy
            )

        sess.run(print_accuracy_op, tag="evaluate") 
開發者ID:tf-encrypted,項目名稱:tf-encrypted,代碼行數:21,代碼來源:common.py

示例9: cond

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import print [as 別名]
def cond(
        self,
        i: tf.Tensor,
        max_iter: tf.Tensor,
        nb_epochs: tf.Tensor,
        avg_loss: tf.Tensor,
    ):
        """Check if training termination condition has been met."""
        is_end_epoch = tf.equal(i % max_iter, 0)
        to_continue = tf.cast(i < max_iter * nb_epochs, tf.bool)

        def true_fn() -> tf.Tensor:
            to_continue = tf.print("avg_loss: ", avg_loss)
            return to_continue

        def false_fn() -> tf.Tensor:
            return to_continue

        return tf.cond(is_end_epoch, true_fn, false_fn) 
開發者ID:tf-encrypted,項目名稱:tf-encrypted,代碼行數:21,代碼來源:network_c.py

示例10: debug

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import print [as 別名]
def debug(x: PondTensor, summarize=None, message=""):
    """Print contents of a PondTensor for debugging purposes."""
    if isinstance(x, PondPublicTensor):
        tf.print(
            x.value_on_0.value,
            [x.value_on_0.value],
            summarize=summarize,
            message=message,
        )

    elif isinstance(x, PondPrivateTensor):
        tf.print(
            x.share0.value,
            [x.reveal().value_on_0.value],
            summarize=summarize,
            message=message,
        )

    else:
        raise TypeError("Don't know how to debug {}".format(type(x)))


#
# identity
# 
開發者ID:tf-encrypted,項目名稱:tf-encrypted,代碼行數:27,代碼來源:pond.py

示例11: train

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import print [as 別名]
def train(self, train_dataset):
        """ main training call for CVAE """
        num_samples = int(train_dataset.shape[0]/self.batch_size)
        train_dataset = tf.data.Dataset.from_tensor_slices(train_dataset).shuffle(train_dataset.shape[0]).batch(self.batch_size)
        for i in range(self.epochs):
            j = 1
            norm = 0
            Loss = 0
            print("Epoch: %s" % str(i+1))
            for train_x in train_dataset:
                gradients, loss = self.compute_gradients(train_x)
                Loss += loss
                norm += tf.reduce_mean([tf.norm(g) for g in gradients])
                self.apply_gradients(gradients)
                if j != 1 and j % 20 == 0:
                    # good to print out euclidean norm of gradients
                    tf.print("Epoch: %s, Batch: %s/%s" % (i+1,j,num_samples))
                    tf.print("Mean-Loss: ", Loss/j, ", Mean gradient-norm: ", norm/j)
                j += 1 
開發者ID:atreyasha,項目名稱:deep-generative-models,代碼行數:21,代碼來源:CVAE.py

示例12: _distributed_epoch

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import print [as 別名]
def _distributed_epoch(self, dataset, step):
        total_loss = 0.0
        num_batches = 0.0
        for batch in dataset:
            if self.writer is not None:
                with self.writer.as_default():
                    tf.summary.image(
                        "Training data",
                        tf.cast(batch[0] * 255, tf.uint8),
                        max_outputs=8)
            per_replica_loss = self._distribution_strategy.experimental_run_v2(
                self._train_step if step else self._val_step, args=(batch,))
            total_loss += self._distribution_strategy.reduce(
                tf.distribute.ReduceOp.SUM, per_replica_loss,
                axis=None)
            num_batches += 1.0
            tf.print(num_batches, ':', total_loss / num_batches, sep='')
        total_loss = total_loss / num_batches
        return total_loss 
開發者ID:fsx950223,項目名稱:mobilenetv2-yolov3,代碼行數:21,代碼來源:train.py

示例13: _info

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import print [as 別名]
def _info(self):
        parent_info = tfds.object_detection.voc.Voc().info
        print(parent_info)
        return tfds.core.DatasetInfo(
            builder=self,
            description=parent_info.description,
            features=tfds.features.FeaturesDict(
                {
                    "image": tfds.features.Image(shape=(None, None, 3)),
                    "image/filename": tfds.features.Text(),
                    "label": tfds.features.Image(shape=(None, None, 1)),
                }
            ),
            homepage=parent_info.homepage,
            citation=parent_info.citation,
        ) 
開發者ID:PacktPublishing,項目名稱:Hands-On-Neural-Networks-with-TensorFlow-2.0,代碼行數:18,代碼來源:semsegfull.py

示例14: save_config

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import print [as 別名]
def save_config(config, logdir=None):
  if logdir:
    with config.unlocked:
      config.logdir = logdir
    message = 'Start a new run and write summaries and checkpoints to {}.'
    print(message.format(config.logdir))
    tf.gfile.MakeDirs(config.logdir)
    config_path = os.path.join(config.logdir, 'config.yaml')
    with tf.gfile.GFile(config_path, 'w') as file_:
      yaml.dump(
          config, file_, yaml.Dumper,
          allow_unicode=True,
          default_flow_style=False)
  else:
    message = (
        'Start a new run without storing summaries and checkpoints since no '
        'logging directory was specified.')
    print(message)
  return config 
開發者ID:google-research,項目名稱:dreamer,代碼行數:21,代碼來源:utility.py

示例15: print_metrics

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import print [as 別名]
def print_metrics(metrics, step, every, decimals=2, name='metrics'):
  factor = 10 ** decimals
  means, updates = [], []
  for key, value in metrics.items():
    key = 'metrics_{}_{}'.format(name, key)
    mean = tools.StreamingMean((), tf.float32, key)
    means.append(mean)
    updates.append(mean.submit(value))
  with tf.control_dependencies(updates):
    message = '{}: step/{} ='.format(name, '/'.join(metrics.keys()))
    print_metrics = tf.cond(
        tf.equal(step % every, 0),
        lambda: tf.print(message, [step] + [
            tf.round(mean.clear() * factor) / factor for mean in means]),
        tf.no_op)
  return print_metrics 
開發者ID:google-research,項目名稱:dreamer,代碼行數:18,代碼來源:utility.py


注:本文中的tensorflow.print方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。