當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.pow方法代碼示例

本文整理匯總了Python中tensorflow.pow方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.pow方法的具體用法?Python tensorflow.pow怎麽用?Python tensorflow.pow使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.pow方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _apply_gradients

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pow [as 別名]
def _apply_gradients(self, grads, x, optim_state):
        """Refer to parent class documentation."""
        new_x = [None] * len(x)
        new_optim_state = {
            "t": optim_state["t"] + 1.,
            "m": [None] * len(x),
            "u": [None] * len(x)
        }
        t = new_optim_state["t"]
        for i in xrange(len(x)):
            g = grads[i]
            m_old = optim_state["m"][i]
            u_old = optim_state["u"][i]
            new_optim_state["m"][i] = (
                self._beta1 * m_old + (1. - self._beta1) * g)
            new_optim_state["u"][i] = (
                self._beta2 * u_old + (1. - self._beta2) * g * g)
            m_hat = new_optim_state["m"][i] / (1. - tf.pow(self._beta1, t))
            u_hat = new_optim_state["u"][i] / (1. - tf.pow(self._beta2, t))
            new_x[i] = (
                x[i] - self._lr * m_hat / (tf.sqrt(u_hat) + self._epsilon))
        return new_x, new_optim_state 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:24,代碼來源:attacks_tf.py

示例2: scaled_dot_product_attention_simple

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pow [as 別名]
def scaled_dot_product_attention_simple(q, k, v, bias, name=None):
  """Scaled dot-product attention. One head. One spatial dimension.

  Args:
    q: a Tensor with shape [batch, length_q, depth_k]
    k: a Tensor with shape [batch, length_kv, depth_k]
    v: a Tensor with shape [batch, length_kv, depth_v]
    bias: optional Tensor broadcastable to [batch, length_q, length_kv]
    name: an optional string

  Returns:
    A Tensor.
  """
  with tf.variable_scope(
      name, default_name="scaled_dot_product_attention_simple"):
    scalar = tf.rsqrt(tf.to_float(common_layers.shape_list(q)[2]))
    logits = tf.matmul(q * scalar, k, transpose_b=True)
    if bias is not None:
      logits += bias
    weights = tf.nn.softmax(logits, name="attention_weights")
    if common_layers.should_generate_summaries():
      tf.summary.image(
          "attention", tf.expand_dims(tf.pow(weights, 0.2), 3), max_outputs=1)
    return tf.matmul(weights, v) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:26,代碼來源:common_attention.py

示例3: locationPE

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pow [as 別名]
def locationPE(h, w, dim, outDim = -1, addBias = True):    
    x = tf.expand_dims(tf.to_float(tf.linspace(-config.locationBias, config.locationBias, w)), axis = -1)
    y = tf.expand_dims(tf.to_float(tf.linspace(-config.locationBias, config.locationBias, h)), axis = -1)
    i = tf.expand_dims(tf.to_float(tf.range(dim)), axis = 0)

    peSinX = tf.sin(x / (tf.pow(10000.0, i / dim)))
    peCosX = tf.cos(x / (tf.pow(10000.0, i / dim)))
    peSinY = tf.sin(y / (tf.pow(10000.0, i / dim)))
    peCosY = tf.cos(y / (tf.pow(10000.0, i / dim)))

    peSinX = tf.tile(tf.expand_dims(peSinX, axis = 0), [h, 1, 1])
    peCosX = tf.tile(tf.expand_dims(peCosX, axis = 0), [h, 1, 1])
    peSinY = tf.tile(tf.expand_dims(peSinY, axis = 1), [1, w, 1])
    peCosY = tf.tile(tf.expand_dims(peCosY, axis = 1), [1, w, 1]) 

    grid = tf.concat([peSinX, peCosX, peSinY, peCosY], axis = -1)
    dim *= 4
    
    if outDim > 0:
        grid = linear(grid, dim, outDim, addBias = addBias, name = "locationPE")
        dim = outDim

    return grid, dim 
開發者ID:stanfordnlp,項目名稱:mac-network,代碼行數:25,代碼來源:ops.py

示例4: spread_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pow [as 別名]
def spread_loss(labels, logits, margin, regularizer=None):
    """
    Args:
        labels: [batch_size, num_label].
        logits: [batch_size, num_label].
        margin: Integer or 1-D Tensor.
        regularizer: use regularization.

    Returns:
        loss: Spread loss.
    """
    a_target = cl.reduce_sum(labels * logits, axis=1, keepdims=True)
    dist = (1 - labels) * margin - (a_target - logits)
    dist = tf.pow(tf.maximum(0., dist), 2)
    loss = tf.reduce_mean(tf.reduce_sum(dist, axis=-1))
    if regularizer is not None:
        regularizer = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
        loss += tf.reduce_mean(regularizer)
    return(loss) 
開發者ID:naturomics,項目名稱:CapsLayer,代碼行數:21,代碼來源:losses.py

示例5: margin_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pow [as 別名]
def margin_loss(labels,
                logits,
                upper_margin=0.9,
                bottom_margin=0.1,
                downweight=0.5):
    """
    Args:
        labels: [batch_size, num_label].
        logits: [batch_size, num_label].
    """
    positive_selctor = tf.cast(tf.less(logits, upper_margin), tf.float32)
    positive_cost = positive_selctor * labels * tf.pow(logits - upper_margin, 2)

    negative_selctor = tf.cast(tf.greater(logits, bottom_margin), tf.float32)
    negative_cost = negative_selctor * (1 - labels) * tf.pow(logits - bottom_margin, 2)
    loss = 0.5 * positive_cost + 0.5 * downweight * negative_cost
    return tf.reduce_mean(tf.reduce_sum(loss, axis=-1)) 
開發者ID:naturomics,項目名稱:CapsLayer,代碼行數:19,代碼來源:losses.py

示例6: focal_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pow [as 別名]
def focal_loss(pred, gt):
  ''' Modified focal loss. Exactly the same as CornerNet.
      Runs faster and costs a little bit more memory
    Arguments:
      pred (batch,h,w,c)
      gt_regr (batch,h,w,c)
  '''
  pos_inds = tf.cast(tf.equal(gt,1.0),dtype=tf.float32)
  neg_inds = 1.0-pos_inds
  neg_weights = tf.pow(1.0 - gt, 4.0)
 
  pred=tf.clip_by_value(pred, 1e-6, 1.0 - 1e-6)
  pos_loss = tf.log(pred) * tf.pow(1.0 - pred, 2.0) * pos_inds
  neg_loss = tf.log(1.0 - pred) * tf.pow(pred, 2.0) * neg_weights * neg_inds

  num_pos  = tf.reduce_sum(pos_inds)
  pos_loss = tf.reduce_sum(pos_loss)
  neg_loss = tf.reduce_sum(neg_loss)

   loss =  - (pos_loss + neg_loss) / num_pos 
開發者ID:xggIoU,項目名稱:centernet_tensorflow_wilderface_voc,代碼行數:22,代碼來源:loss.py

示例7: tune

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pow [as 別名]
def tune(self, acceptance_rate, fresh_start):
        def adapt_stepsize():
            new_step = tf.assign(self.step, (1 - fresh_start) * self.step + 1)
            rate1 = 1.0 / (new_step + self.t0)
            new_h_bar = tf.assign(
                self.h_bar, (1 - fresh_start) * (1 - rate1) * self.h_bar +
                rate1 * (self.delta - acceptance_rate))
            log_epsilon = self.mu - tf.sqrt(new_step) / self.gamma * new_h_bar
            rate = tf.pow(new_step, -self.kappa)
            new_log_epsilon_bar = tf.assign(
                self.log_epsilon_bar,
                rate * log_epsilon + (1 - fresh_start) * (1 - rate) *
                self.log_epsilon_bar)
            with tf.control_dependencies([new_log_epsilon_bar]):
                new_log_epsilon = tf.identity(log_epsilon)

            return tf.exp(new_log_epsilon)

        c = tf.cond(self.adapt_step_size,
                    adapt_stepsize,
                    lambda: tf.exp(self.log_epsilon_bar))

        return c 
開發者ID:thu-ml,項目名稱:zhusuan,代碼行數:25,代碼來源:hmc.py

示例8: update

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pow [as 別名]
def update(self, x):
        # x: (chain_dims data_dims)
        new_t = tf.assign(self.t, self.t + 1)
        weight = (1 - self.decay) / (1 - tf.pow(self.decay, new_t))
        # incr: (chain_dims data_dims)
        incr = [weight * (q - mean) for q, mean in zip(x, self.mean)]
        # mean: (1,...,1 data_dims)
        update_mean = [mean.assign_add(
            tf.reduce_mean(i, axis=self.chain_axes, keepdims=True))
            for mean, i in zip(self.mean, incr)]
        # var: (1,...,1 data_dims)
        new_var = [
            (1 - weight) * var +
            tf.reduce_mean(i * (q - mean), axis=self.chain_axes,
                           keepdims=True)
            for var, i, q, mean in zip(self.var, incr, x, update_mean)]

        update_var = [tf.assign(var, n_var)
                      for var, n_var in zip(self.var, new_var)]
        return update_var 
開發者ID:thu-ml,項目名稱:zhusuan,代碼行數:22,代碼來源:hmc.py

示例9: call

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pow [as 別名]
def call(self, inputs):
    input_shape = tf.shape(inputs)
    batch_size, seq_len = input_shape[0], input_shape[1]

    pos_range = tf.range(-seq_len//2, seq_len//2)
    if self.transform is None:
      pos_feature = pos_range
    elif self.transform == 'abs':
      pos_feature = tf.math.abs(pos_range)
    elif self.transform == 'reversed':
      pos_feature = pos_range[::-1]
    else:
      raise ValueError('Unknown ConcatPosition transform.')

    if self.power != 1:
      pos_feature = tf.pow(pos_feature, self.power)
    pos_feature = tf.expand_dims(pos_feature, axis=0)
    pos_feature = tf.expand_dims(pos_feature, axis=-1)
    pos_feature = tf.tile(pos_feature, [batch_size, 1, 1])
    pos_feature = tf.dtypes.cast(pos_feature, dtype=tf.float32)

    return tf.concat([pos_feature, inputs], axis=-1) 
開發者ID:calico,項目名稱:basenji,代碼行數:24,代碼來源:layers.py

示例10: _smooth_l1_loss_base

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pow [as 別名]
def _smooth_l1_loss_base(bbox_pred, bbox_targets, sigma=1.0):
    '''

    :param bbox_pred: [-1, 4] in RPN. [-1, cls_num+1, 4] or [-1, cls_num+1, 5] in Fast-rcnn
    :param bbox_targets: shape is same as bbox_pred
    :param sigma:
    :return:
    '''
    sigma_2 = sigma**2

    box_diff = bbox_pred - bbox_targets

    abs_box_diff = tf.abs(box_diff)

    smoothL1_sign = tf.stop_gradient(
        tf.to_float(tf.less(abs_box_diff, 1. / sigma_2)))
    loss_box = tf.pow(box_diff, 2) * (sigma_2 / 2.0) * smoothL1_sign \
               + (abs_box_diff - (0.5 / sigma_2)) * (1.0 - smoothL1_sign)
    return loss_box 
開發者ID:DetectionTeamUCAS,項目名稱:R2CNN_Faster-RCNN_Tensorflow,代碼行數:21,代碼來源:losses.py

示例11: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pow [as 別名]
def __init__(self, n_features, lenscale=None, p=1, variational=False,
                 learn_lenscale=False):
        """Create an instance of an arc cosine kernel layer."""
        # Setup random weights
        if variational:
            kern = RBFVariational(lenscale=lenscale,
                                  learn_lenscale=learn_lenscale)
        else:
            kern = RBF(lenscale=lenscale, learn_lenscale=learn_lenscale)
        super().__init__(n_features=n_features, kernel=kern)

        # Kernel order
        assert isinstance(p, int) and p >= 0
        if p == 0:
            self.pfunc = tf.sign
        elif p == 1:
            self.pfunc = lambda x: x
        else:
            self.pfunc = lambda x: tf.pow(x, p) 
開發者ID:gradientinstitute,項目名稱:aboleth,代碼行數:21,代碼來源:layers.py

示例12: create_tensor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pow [as 別名]
def create_tensor(self, in_layers=None, set_tensors=True, **kwargs):
    inputs = self._get_input_tensors(in_layers)
    temp = []
    subspaces = []
    # creates subspaces the same way it was done in AlphaShare
    for input_tensor in inputs:
      subspace_size = int(input_tensor.get_shape()[-1].value / 2)
      subspaces.append(input_tensor[:, :subspace_size])
      subspaces.append(input_tensor[:, subspace_size:])
      product = tf.matmul(tf.transpose(subspaces[0]), subspaces[1])
      subspaces = []
      # calculate squared Frobenius norm
      temp.append(tf.reduce_sum(tf.pow(product, 2)))
    out_tensor = tf.reduce_sum(temp)
    self.out_tensor = out_tensor
    return out_tensor 
開發者ID:simonfqy,項目名稱:PADME,代碼行數:18,代碼來源:layers.py

示例13: add_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pow [as 別名]
def add_loss(self, global_step):
    '''Adds loss to the model. Sets "loss" field. initialize must have been called.'''
    with tf.variable_scope('loss') as scope:
      hp = self._hparams
      self.mel_loss = tf.reduce_mean(tf.abs(self.mel_targets - self.mel_outputs))
      l1 = tf.abs(self.linear_targets - self.linear_outputs)
      # Prioritize loss for frequencies under 3000 Hz.
      n_priority_freq = int(3000 / (hp.sample_rate * 0.5) * hp.num_freq)
      self.linear_loss = 0.5 * tf.reduce_mean(l1) + 0.5 * tf.reduce_mean(l1[:,:,0:n_priority_freq])
             
      self.loss = self.mel_loss + self.linear_loss
   
      if hp.use_vae:
          # 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
          self.ki_loss = -0.5 * tf.reduce_sum(1 + self.log_var - tf.pow(self.mu, 2) - tf.exp(self.log_var))
          vae_loss_weight = vae_weight(global_step)
          self.loss += self.ki_loss * vae_loss_weight 
開發者ID:yanggeng1995,項目名稱:vae_tacotron,代碼行數:19,代碼來源:tacotron.py

示例14: _db_to_amp

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pow [as 別名]
def _db_to_amp(x):
    return tf.pow(tf.ones(tf.shape(x)) * 10.0, x * 0.05) 
開發者ID:candlewill,項目名稱:Griffin_lim,代碼行數:4,代碼來源:griffin_lim.py

示例15: db_to_gain

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pow [as 別名]
def db_to_gain(tensor):
    """ Convert from decibel to gain in tensorflow.

    :param tensor_db: Tensor to convert.
    :returns: Converted tensor.
    """
    return tf.pow(10., (tensor / 20.)) 
開發者ID:deezer,項目名稱:spleeter,代碼行數:9,代碼來源:convertor.py


注:本文中的tensorflow.pow方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。