當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.placeholders方法代碼示例

本文整理匯總了Python中tensorflow.placeholders方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.placeholders方法的具體用法?Python tensorflow.placeholders怎麽用?Python tensorflow.placeholders使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.placeholders方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: rnn_placeholders

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholders [as 別名]
def rnn_placeholders(state):
    """
    Given nested [multilayer] RNN state tensor, infers and returns state placeholders.

    Args:
        state:  tf.nn.lstm zero-state tuple.

    Returns:    tuple of placeholders
    """
    if isinstance(state, tf.contrib.rnn.LSTMStateTuple):
        c, h = state
        c = tf.placeholder(tf.float32, tf.TensorShape([None]).concatenate(c.get_shape()[1:]), c.op.name + '_c_pl')
        h = tf.placeholder(tf.float32, tf.TensorShape([None]).concatenate(h.get_shape()[1:]), h.op.name + '_h_pl')
        return tf.contrib.rnn.LSTMStateTuple(c, h)
    elif isinstance(state, tf.Tensor):
        h = state
        h = tf.placeholder(tf.float32, tf.TensorShape([None]).concatenate(h.get_shape()[1:]), h.op.name + '_h_pl')
        return h
    else:
        structure = [rnn_placeholders(x) for x in state]
        return tuple(structure) 
開發者ID:Kismuz,項目名稱:btgym,代碼行數:23,代碼來源:utils.py

示例2: nested_placeholders

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholders [as 別名]
def nested_placeholders(ob_space, batch_dim=None, name='nested'):
    """
    Given nested observation space as dictionary of shape tuples,
    returns nested state batch-wise placeholders.

    Args:
        ob_space:   [nested] dict of shapes
        name:       name scope
        batch_dim:  batch dimension
    Returns:
        nested dictionary of placeholders
    """
    if isinstance(ob_space, dict):
        out = {key: nested_placeholders(value, batch_dim, name + '_' + key) for key, value in ob_space.items()}
        return out
    else:
        out = tf.placeholder(tf.float32, [batch_dim] + list(ob_space), name + '_pl')
        return out 
開發者ID:Kismuz,項目名稱:btgym,代碼行數:20,代碼來源:utils.py

示例3: build_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholders [as 別名]
def build_graph(self, constraint_obj, target, input_val_dict, reg_coeff):
        """
        Sets the objective function and target weights for the optimize function

        Args:
            constraint_obj (tf_op) : constraint objective
            target (Policy) : Policy whose values we are optimizing over
            inputs (list) : tuple of tf.placeholders for input data which may be subsampled. The first dimension corresponds to the number of data points
            reg_coeff (float): regularization coefficient
        """
        self._target = target
        self.reg_coeff = reg_coeff
        self._input_ph_dict = input_val_dict

        params = list(target.get_params().values())
        constraint_grads = tf.gradients(constraint_obj, xs=params)

        for idx, (grad, param) in enumerate(zip(constraint_grads, params)):
            if grad is None:
                constraint_grads[idx] = tf.zeros_like(param)

        constraint_gradient = tf.concat([tf.reshape(grad, [-1]) for grad in constraint_grads], axis=0)

        self._constraint_gradient = constraint_gradient 
開發者ID:jonasrothfuss,項目名稱:ProMP,代碼行數:26,代碼來源:conjugate_gradient_optimizer.py

示例4: likelihood_ratio_sym

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholders [as 別名]
def likelihood_ratio_sym(self, obs, action, dist_info_old, policy_params):
        """
        Computes the likelihood p_new(obs|act)/p_old ratio between

        Args:
            obs (tf.Tensor): symbolic variable for observations
            action (tf.Tensor): symbolic variable for actions
            dist_info_old (dict): dictionary of tf.placeholders with old policy information
            policy_params (dict): dictionary of the policy parameters (each value is a tf.Tensor)

        Returns:
            (tf.Tensor) : likelihood ratio
        """

        distribution_info_new = self.distribution_info_sym(obs, params=policy_params)
        likelihood_ratio = self._dist.likelihood_ratio_sym(action, dist_info_old, distribution_info_new)
        return likelihood_ratio 
開發者ID:jonasrothfuss,項目名稱:ProMP,代碼行數:19,代碼來源:base.py

示例5: flat_placeholders

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholders [as 別名]
def flat_placeholders(ob_space, batch_dim=None, name='flt'):
    """
    Given nested observation space as dictionary of shape tuples,
    returns flattened dictionary of batch-wise placeholders.

    Args:
        ob_space:   [nested dict] of tuples
        name:       name_scope
        batch_dim:  batch dimension
    Returns:
        flat dictionary of tf.placeholders
    """
    return flatten_nested(nested_placeholders(ob_space, batch_dim=batch_dim, name=name)) 
開發者ID:Kismuz,項目名稱:btgym,代碼行數:15,代碼來源:utils.py

示例6: feed_dict_from_nested

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholders [as 別名]
def feed_dict_from_nested(placeholder, value, expand_batch=False):
    """
    Zips flat feed dictionary form nested dictionaries of placeholders and values.

    Args:
        placeholder:    nested dictionary of placeholders
        value:          nested dictionary of values
        expand_batch:   if true - add fake batch dimension to values

    Returns:
        flat feed_dict
    """
    assert_same_structure(placeholder, value, check_types=True)
    return _flat_from_nested(placeholder, value, expand_batch) 
開發者ID:Kismuz,項目名稱:btgym,代碼行數:16,代碼來源:utils.py

示例7: feed_dict_rnn_context

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholders [as 別名]
def feed_dict_rnn_context(placeholders, values):
    """
    Creates tf.feed_dict for flat placeholders and nested values.

    Args:
        placeholders:       flat structure of placeholders
        values:             nested structure of values

    Returns:
        flat feed dictionary
    """
    return {key: value for key, value in zip(placeholders, flatten_nested(values))} 
開發者ID:Kismuz,項目名稱:btgym,代碼行數:14,代碼來源:utils.py

示例8: _get_placeholder_list

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholders [as 別名]
def _get_placeholder_list(name, length, dtype=tf.int32):
        """
        Args:
            name: prefix of name of each tf.placeholder list item, where i'th name is [name]i.
            length: number of items (tf.placeholders) in the returned list.
        Returns:
            list of tensorflow placeholder of dtype=tf.int32 and unspecified shape.
        """
        return [tf.placeholder(dtype, shape=[None], name=name+str(i)) for i in range(length)] 
開發者ID:mckinziebrandon,項目名稱:DeepChatModels,代碼行數:11,代碼來源:legacy_models.py

示例9: loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholders [as 別名]
def loss(self, net_out):
	m = self.meta
	loss_type = self.meta['type']
	assert loss_type in _LOSS_TYPE, \
	'Loss type {} not implemented'.format(loss_type)

	out = net_out
	out_shape = out.get_shape()
	out_dtype = out.dtype.base_dtype
	_truth = tf.placeholders(out_dtype, out_shape)

	self.placeholders = dict({
			'truth': _truth
		})

	diff = _truth - out
	if loss_type in ['sse','12']:
		loss = tf.nn.l2_loss(diff)

	elif loss_type == ['smooth']:
		small = tf.cast(diff < 1, tf.float32)
		large = 1. - small
		l1_loss = tf.nn.l1_loss(tf.multiply(diff, large))
		l2_loss = tf.nn.l2_loss(tf.multiply(diff, small))
		loss = l1_loss + l2_loss

	elif loss_type in ['sparse', 'l1']:
		loss = l1_loss(diff)

	elif loss_type == 'softmax':
		loss = tf.nn.softmax_cross_entropy_with_logits(logits, y)
		loss = tf.reduce_mean(loss)

	elif loss_type == 'svm':
		assert 'train_size' in m, \
		'Must specify'
		size = m['train_size']
		self.nu = tf.Variable(tf.ones([train_size, num_classes])) 
開發者ID:thtrieu,項目名稱:darkflow,代碼行數:40,代碼來源:train.py

示例10: loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholders [as 別名]
def loss(self, net_out):
    m = self.meta
    loss_type = self.meta['type']
    assert loss_type in _LOSS_TYPE, \
        'Loss type {} not implemented'.format(loss_type)

    out = net_out
    out_shape = out.get_shape()
    out_dtype = out.dtype.base_dtype
    _truth = tf.placeholders(out_dtype, out_shape)

    self.placeholders = dict({
        'truth': _truth
    })

    diff = _truth - out
    if loss_type in ['sse', '12']:
        loss = tf.nn.l2_loss(diff)

    elif loss_type == ['smooth']:
        small = tf.cast(diff < 1, tf.float32)
        large = 1. - small
        l1_loss = tf.nn.l1_loss(tf.multiply(diff, large))
        l2_loss = tf.nn.l2_loss(tf.multiply(diff, small))
        loss = l1_loss + l2_loss

    elif loss_type in ['sparse', 'l1']:
        loss = l1_loss(diff)

    elif loss_type == 'softmax':
        loss = tf.nn.softmax_cross_entropy_with_logits(logits, y)
        loss = tf.reduce_mean(loss)

    elif loss_type == 'svm':
        assert 'train_size' in m, \
            'Must specify'
        size = m['train_size']
        self.nu = tf.Variable(tf.ones([train_size, num_classes])) 
開發者ID:Nasdin,項目名稱:VideoRecognition-realtime-autotrainer-alerts,代碼行數:40,代碼來源:train.py

示例11: distribution_info_sym

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholders [as 別名]
def distribution_info_sym(self, obs_var, params=None):
        """
        Return the symbolic distribution information about the actions.

        Args:
            obs_var (placeholder) : symbolic variable for observations
            params (None or dict) : a dictionary of placeholders that contains information about the
            state of the policy at the time it received the observation

        Returns:
            (dict) : a dictionary of tf placeholders for the policy output distribution
        """
        raise NotImplementedError 
開發者ID:jonasrothfuss,項目名稱:ProMP,代碼行數:15,代碼來源:base.py

示例12: distribution_info_keys

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholders [as 別名]
def distribution_info_keys(self, obs, state_infos):
        """
        Args:
            obs (placeholder) : symbolic variable for observations
            state_infos (dict) : a dictionary of placeholders that contains information about the
            state of the policy at the time it received the observation

        Returns:
            (dict) : a dictionary of tf placeholders for the policy output distribution
        """
        raise NotImplementedError 
開發者ID:jonasrothfuss,項目名稱:ProMP,代碼行數:13,代碼來源:base.py


注:本文中的tensorflow.placeholders方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。