當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.placeholder_with_default方法代碼示例

本文整理匯總了Python中tensorflow.placeholder_with_default方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.placeholder_with_default方法的具體用法?Python tensorflow.placeholder_with_default怎麽用?Python tensorflow.placeholder_with_default使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.placeholder_with_default方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_reset_forced

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder_with_default [as 別名]
def test_reset_forced(self):
    reset = tf.placeholder_with_default(False, ())
    batch_env = self._create_test_batch_env((2, 4))
    algo = tools.MockAlgorithm(batch_env)
    done, _, _ = tools.simulate(batch_env, algo, False, reset)
    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      sess.run(done)
      sess.run(done, {reset: True})
      sess.run(done)
      sess.run(done, {reset: True})
      sess.run(done)
      sess.run(done)
      sess.run(done)
    self.assertAllEqual([1, 2, 2, 2], batch_env[0].steps)
    self.assertAllEqual([1, 2, 4], batch_env[1].steps) 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:18,代碼來源:simulate_test.py

示例2: testLSTMSeq2SeqAttention

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder_with_default [as 別名]
def testLSTMSeq2SeqAttention(self):
    vocab_size = 9
    x = np.random.random_integers(1, high=vocab_size - 1, size=(3, 5, 1, 1))
    y = np.random.random_integers(1, high=vocab_size - 1, size=(3, 6, 1, 1))
    hparams = lstm.lstm_attention()

    p_hparams = problem_hparams.test_problem_hparams(vocab_size, vocab_size)
    x = tf.constant(x, dtype=tf.int32)
    x = tf.placeholder_with_default(x, shape=[None, None, 1, 1])

    with self.test_session() as session:
      features = {
          "inputs": x,
          "targets": tf.constant(y, dtype=tf.int32),
      }
      model = lstm.LSTMSeq2seqAttention(
          hparams, tf.estimator.ModeKeys.TRAIN, p_hparams)
      logits, _ = model(features)
      session.run(tf.global_variables_initializer())
      res = session.run(logits)
    self.assertEqual(res.shape, (3, 6, 1, 1, vocab_size)) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:23,代碼來源:lstm_test.py

示例3: testLSTMSeq2seqAttentionBidirectionalEncoder

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder_with_default [as 別名]
def testLSTMSeq2seqAttentionBidirectionalEncoder(self):
    vocab_size = 9
    x = np.random.random_integers(1, high=vocab_size - 1, size=(3, 5, 1, 1))
    y = np.random.random_integers(1, high=vocab_size - 1, size=(3, 6, 1, 1))
    hparams = lstm.lstm_attention()

    p_hparams = problem_hparams.test_problem_hparams(vocab_size, vocab_size)
    x = tf.constant(x, dtype=tf.int32)
    x = tf.placeholder_with_default(x, shape=[None, None, 1, 1])

    with self.test_session() as session:
      features = {
          "inputs": x,
          "targets": tf.constant(y, dtype=tf.int32),
      }
      model = lstm.LSTMSeq2seqAttentionBidirectionalEncoder(
          hparams, tf.estimator.ModeKeys.TRAIN, p_hparams)
      logits, _ = model(features)
      session.run(tf.global_variables_initializer())
      res = session.run(logits)
    self.assertEqual(res.shape, (3, 6, 1, 1, vocab_size)) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:23,代碼來源:lstm_test.py

示例4: add_placeholders

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder_with_default [as 別名]
def add_placeholders(self):
        """
        Add placeholders to the graph. Placeholders are used to feed in inputs.
        """
        # Add placeholders for inputs.
        # These are all batch-first: the None corresponds to batch_size and
        # allows you to run the same model with variable batch_size
        self.context_ids = tf.placeholder(tf.int32, shape=[None, self.FLAGS.context_len])
        self.context_mask = tf.placeholder(tf.int32, shape=[None, self.FLAGS.context_len])
        self.qn_ids = tf.placeholder(tf.int32, shape=[None, self.FLAGS.question_len])
        self.qn_mask = tf.placeholder(tf.int32, shape=[None, self.FLAGS.question_len])
        self.ans_span = tf.placeholder(tf.int32, shape=[None, 2])

        # Add a placeholder to feed in the keep probability (for dropout).
        # This is necessary so that we can instruct the model to use dropout when training, but not when testing
        self.keep_prob = tf.placeholder_with_default(1.0, shape=()) 
開發者ID:abisee,項目名稱:cs224n-win18-squad,代碼行數:18,代碼來源:qa_model.py

示例5: create_tensor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder_with_default [as 別名]
def create_tensor(self, in_layers=None, set_tensors=True, **kwargs):
    if in_layers is None:
      in_layers = self.in_layers
    in_layers = convert_to_layers(in_layers)
    try:
      shape = self._shape
    except NotImplementedError:
      shape = None
    if len(in_layers) > 0:
      queue = in_layers[0]
      placeholder = queue.out_tensors[self.get_pre_q_name()]
      self.out_tensor = tf.placeholder_with_default(placeholder, self._shape)
      return self.out_tensor
    out_tensor = tf.placeholder(dtype=self.dtype, shape=self._shape)
    if set_tensors:
      self.out_tensor = out_tensor
    return out_tensor 
開發者ID:simonfqy,項目名稱:PADME,代碼行數:19,代碼來源:layers.py

示例6: execute_cpu

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder_with_default [as 別名]
def execute_cpu(self, graph_fn, inputs):
    """Constructs the graph, executes it on CPU and returns the result.

    Args:
      graph_fn: a callable that constructs the tensorflow graph to test. The
        arguments of this function should correspond to `inputs`.
      inputs: a list of numpy arrays to feed input to the computation graph.

    Returns:
      A list of numpy arrays or a scalar returned from executing the tensorflow
      graph.
    """
    with self.test_session(graph=tf.Graph()) as sess:
      placeholders = [tf.placeholder_with_default(v, v.shape) for v in inputs]
      results = graph_fn(*placeholders)
      sess.run([tf.global_variables_initializer(), tf.tables_initializer(),
                tf.local_variables_initializer()])
      materialized_results = sess.run(results, feed_dict=dict(zip(placeholders,
                                                                  inputs)))
      if (len(materialized_results) == 1
          and (isinstance(materialized_results, list)
               or isinstance(materialized_results, tuple))):
        materialized_results = materialized_results[0]
    return materialized_results 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:26,代碼來源:test_case.py

示例7: testLSTMSeq2SeqAttention

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder_with_default [as 別名]
def testLSTMSeq2SeqAttention(self):
    vocab_size = 9
    x = np.random.randint(1, high=vocab_size, size=(3, 5, 1, 1))
    y = np.random.randint(1, high=vocab_size, size=(3, 6, 1, 1))
    hparams = lstm.lstm_attention()

    p_hparams = problem_hparams.test_problem_hparams(vocab_size,
                                                     vocab_size,
                                                     hparams)
    x = tf.constant(x, dtype=tf.int32)
    x = tf.placeholder_with_default(x, shape=[None, None, 1, 1])

    with self.test_session() as session:
      features = {
          "inputs": x,
          "targets": tf.constant(y, dtype=tf.int32),
      }
      model = lstm.LSTMSeq2seqAttention(
          hparams, tf.estimator.ModeKeys.TRAIN, p_hparams)
      logits, _ = model(features)
      session.run(tf.global_variables_initializer())
      res = session.run(logits)
    self.assertEqual(res.shape, (3, 6, 1, 1, vocab_size)) 
開發者ID:yyht,項目名稱:BERT,代碼行數:25,代碼來源:lstm_test.py

示例8: serving_input_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder_with_default [as 別名]
def serving_input_fn():
    feature_placeholders = {
        "user_id": tf.placeholder(tf.int32, [None]),
        "item_id": tf.placeholder(tf.int32, [None]),

        "age": tf.placeholder(tf.int32, [None]),
        "gender": tf.placeholder(tf.string, [None]),
        "occupation": tf.placeholder(tf.string, [None]),
        "zipcode": tf.placeholder(tf.string, [None]),

        "release_year": tf.placeholder(tf.int32, [None]),
    }
    feature_placeholders.update({
        col: tf.placeholder_with_default(tf.constant([0]), [None]) for col in GENRE
    })

    features = {
        key: tf.expand_dims(tensor, -1)
        for key, tensor in feature_placeholders.items()
    }

    return tf.estimator.export.ServingInputReceiver(
        features=features,
        receiver_tensors=feature_placeholders
    ) 
開發者ID:yxtay,項目名稱:recommender-tensorflow,代碼行數:27,代碼來源:ml_100k.py

示例9: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder_with_default [as 別名]
def __init__(self):
        # Set the dimension number for the input feature maps
        self.dim_input = FLAGS.img_size * FLAGS.img_size * 3
        # Set the dimension number for the outputs
        self.dim_output = FLAGS.way_num
        # Load base learning rates from FLAGS
        self.update_lr = FLAGS.base_lr
        # Load the pre-train phase class number from FLAGS
        self.pretrain_class_num = FLAGS.pretrain_class_num
        # Set the initial meta learning rate
        self.meta_lr = tf.placeholder_with_default(FLAGS.meta_lr, ())
        # Set the initial pre-train learning rate
        self.pretrain_lr = tf.placeholder_with_default(FLAGS.pre_lr, ())

        # Set the default objective functions for meta-train and pre-train
        self.loss_func = xent
        self.pretrain_loss_func = softmaxloss

        # Set the default channel number to 3
        self.channels = 3
        # Load the image size from FLAGS
        self.img_size = FLAGS.img_size 
開發者ID:yaoyao-liu,項目名稱:meta-transfer-learning,代碼行數:24,代碼來源:resnet12.py

示例10: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder_with_default [as 別名]
def __init__(self, config, train_network, test_network, global_step, session):
    self.opt_str = config.string("optimizer", "adam").lower()
    self.train_network = train_network
    self.test_network = test_network
    self.session = session
    self.global_step = global_step
    self.validation_step_number = 0
    self.gradient_clipping = config.float("gradient_clipping", -1.0)
    self.learning_rates = config.int_key_dict("learning_rates")
    self.curr_learning_rate = self.learning_rates[1]
    self.lr_var = tf.placeholder(tf.float32, shape=[], name="learning_rate")
    self.loss_scale_var = tf.placeholder_with_default(1.0, shape=[], name="loss_scale")
    self.opt, self.reset_opt_op = self.create_optimizer(config)

    grad_norm = None
    if train_network is not None:
      self._step_op, grad_norm = self.create_step_op_and_grad_norm()
      self._update_ops = self.train_network.update_ops
    else:
      self._step_op = None
      self._update_ops = None
    self.summary_writer, self.summary_op_train, self.summary_op_test = self.init_summaries(config, grad_norm) 
開發者ID:tobiasfshr,項目名稱:MOTSFusion,代碼行數:24,代碼來源:Trainer.py

示例11: wrap_pholder

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder_with_default [as 別名]
def wrap_pholder(self, ph, feed):
        """wrap layer.h into placeholders"""
        phtype = type(self.lay.h[ph])
        if phtype is not dict: return

        sig = '{}/{}'.format(self.scope, ph)
        val = self.lay.h[ph]

        self.lay.h[ph] = tf.placeholder_with_default(
            val['dfault'], val['shape'], name = sig)
        feed[self.lay.h[ph]] = val['feed'] 
開發者ID:AmeyaWagh,項目名稱:Traffic_sign_detection_YOLO,代碼行數:13,代碼來源:baseop.py

示例12: create_rnn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder_with_default [as 別名]
def create_rnn(self, seq):
        layers = [tf.nn.rnn_cell.GRUCell(size) for size in self.hidden_sizes]
        cells = tf.nn.rnn_cell.MultiRNNCell(layers)
        batch = tf.shape(seq)[0]
        zero_states = cells.zero_state(batch, dtype=tf.float32)
        self.in_state = tuple([tf.placeholder_with_default(state, [None, state.shape[1]])
                               for state in zero_states])
        # this line to calculate the real length of seq
        # all seq are padded to be of the same length, which is num_steps
        length = tf.reduce_sum(tf.reduce_max(tf.sign(seq), 2), 1)
        self.output, self.out_state = tf.nn.dynamic_rnn(cells, seq, length, self.in_state) 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:13,代碼來源:19_char_rnn.py

示例13: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder_with_default [as 別名]
def __init__(self, channels=1, n_class=2, model_kwargs={}):
        tf.reset_default_graph()

        self.n_class = n_class
        self.channels = channels

        self.x = tf.placeholder("float", shape=[None, None, None, self.channels], name="inImg")
        # These are not used now
        # self.keep_prob = tf.placeholder_with_default(1.0, [])
        # self.is_training = tf.placeholder_with_default(tf.constant(False), [])

        self.scale_space_num = model_kwargs.get("scale_space_num", 6)
        self.res_depth = model_kwargs.get("res_depth", 3)
        self.featRoot = model_kwargs.get("featRoot", 8)
        self.filter_size = model_kwargs.get("filter_size", 3)
        self.pool_size = model_kwargs.get("pool_size", 2)
        self.activation_name = model_kwargs.get("activation_name", "relu")
        if self.activation_name is "relu":
            self.activation = tf.nn.relu
        if self.activation_name is "elu":
            self.activation = tf.nn.elu
        self.model = model_kwargs.get("model", "aru")
        self.num_scales = model_kwargs.get("num_scales", 5)
        self.final_act = model_kwargs.get("final_act", "softmax")
        print("Model Type: " + self.model)
        logits = create_aru_net(self.x, self.channels, self.n_class, self.scale_space_num, self.res_depth,
                                self.featRoot, self.filter_size, self.pool_size, self.activation, self.model,
                                self.num_scales)
        self.logits = tf.identity(logits, 'logits')
        if self.final_act is "softmax":
            self.predictor = tf.nn.softmax(self.logits, name='output')
        elif self.final_act is "sigmoid":
            self.predictor = tf.nn.sigmoid(self.logits, name='output')
        elif self.final_act is "identity":
            self.predictor = tf.identity(self.logits, name='output') 
開發者ID:TobiasGruening,項目名稱:ARU-Net,代碼行數:37,代碼來源:aru_net.py

示例14: get_message_and_key

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder_with_default [as 別名]
def get_message_and_key(self):
    """Generate random pseudo-boolean key and message values."""

    batch_size = tf.placeholder_with_default(FLAGS.batch_size, shape=[])

    in_m = batch_of_random_bools(batch_size, TEXT_SIZE)
    in_k = batch_of_random_bools(batch_size, KEY_SIZE)
    return in_m, in_k 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:10,代碼來源:train_eval.py

示例15: test_done_forced

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder_with_default [as 別名]
def test_done_forced(self):
    reset = tf.placeholder_with_default(False, ())
    batch_env = self._create_test_batch_env((2, 4))
    algo = tools.MockAlgorithm(batch_env)
    done, _, _ = tools.simulate(batch_env, algo, False, reset)
    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      self.assertAllEqual([False, False], sess.run(done))
      self.assertAllEqual([False, False], sess.run(done, {reset: True}))
      self.assertAllEqual([True, False], sess.run(done))
      self.assertAllEqual([False, False], sess.run(done, {reset: True}))
      self.assertAllEqual([True, False], sess.run(done))
      self.assertAllEqual([False, False], sess.run(done))
      self.assertAllEqual([True, True], sess.run(done)) 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:16,代碼來源:simulate_test.py


注:本文中的tensorflow.placeholder_with_default方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。