當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.placeholder方法代碼示例

本文整理匯總了Python中tensorflow.placeholder方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.placeholder方法的具體用法?Python tensorflow.placeholder怎麽用?Python tensorflow.placeholder使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.placeholder方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_forward

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder [as 別名]
def build_forward(self):
		verbalise = self.FLAGS.verbalise

		# Placeholders
		inp_size = [None] + self.meta['inp_size']
		self.inp = tf.placeholder(tf.float32, inp_size, 'input')
		self.feed = dict() # other placeholders

		# Build the forward pass
		state = identity(self.inp)
		roof = self.num_layer - self.ntrain
		self.say(HEADER, LINE)
		for i, layer in enumerate(self.darknet.layers):
			scope = '{}-{}'.format(str(i),layer.type)
			args = [layer, state, i, roof, self.feed]
			state = op_create(*args)
			mess = state.verbalise()
			self.say(mess)
		self.say(LINE)

		self.top = state
		self.out = tf.identity(state.out, name='output') 
開發者ID:AmeyaWagh,項目名稱:Traffic_sign_detection_YOLO,代碼行數:24,代碼來源:build.py

示例2: _build_input

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder [as 別名]
def _build_input(self):
        self.tails = tf.placeholder(tf.int32, [None])
        self.heads = tf.placeholder(tf.int32, [None])
        self.targets = tf.one_hot(indices=self.heads, depth=self.num_entity)
            
        if not self.query_is_language:
            self.queries = tf.placeholder(tf.int32, [None, self.num_step])
            self.query_embedding_params = tf.Variable(self._random_uniform_unit(
                                                          self.num_query + 1, # <END> token 
                                                          self.query_embed_size), 
                                                      dtype=tf.float32)
        
            rnn_inputs = tf.nn.embedding_lookup(self.query_embedding_params, 
                                                self.queries)
        else:
            self.queries = tf.placeholder(tf.int32, [None, self.num_step, self.num_word])
            self.vocab_embedding_params = tf.Variable(self._random_uniform_unit(
                                                          self.num_vocab + 1, # <END> token
                                                          self.vocab_embed_size),
                                                      dtype=tf.float32)
            embedded_query = tf.nn.embedding_lookup(self.vocab_embedding_params, 
                                                    self.queries)
            rnn_inputs = tf.reduce_mean(embedded_query, axis=2)

        return rnn_inputs 
開發者ID:fanyangxyz,項目名稱:Neural-LP,代碼行數:27,代碼來源:model.py

示例3: autosummary

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder [as 別名]
def autosummary(name, value):
    id = name.replace('/', '_')
    if is_tf_expression(value):
        with tf.name_scope('summary_' + id), tf.device(value.device):
            update_op = _create_autosummary_var(name, value)
            with tf.control_dependencies([update_op]):
                return tf.identity(value)
    else: # python scalar or numpy array
        if name not in _autosummary_immediate:
            with absolute_name_scope('Autosummary/' + id), tf.device(None), tf.control_dependencies(None):
                update_value = tf.placeholder(tf.float32)
                update_op = _create_autosummary_var(name, update_value)
                _autosummary_immediate[name] = update_op, update_value
        update_op, update_value = _autosummary_immediate[name]
        run(update_op, {update_value: np.float32(value)})
        return value

# Create the necessary ops to include autosummaries in TensorBoard report.
# Note: This should be done only once per graph. 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:21,代碼來源:tfutil.py

示例4: binary_refinement

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder [as 別名]
def binary_refinement(sess,Best_X_adv,
                      X_adv, Y, ALPHA, ub, lb, model, dataset='cifar'):
    num_samples = np.shape(X_adv)[0]
    print(dataset)
    if(dataset=="mnist"):
        X_place = tf.placeholder(tf.float32, shape=[1, 1, 28, 28])
    else:
        X_place = tf.placeholder(tf.float32, shape=[1, 3, 32, 32])

    pred = model(X_place)
    for i in range(num_samples):
        logits_op = sess.run(pred,feed_dict={X_place:X_adv[i:i+1,:,:,:]})
        if(not np.argmax(logits_op) == np.argmax(Y[i,:])):
            # Success, increase alpha
            Best_X_adv[i,:,:,:] = X_adv[i,:,:,]
            lb[i] = ALPHA[i,0]
        else:
            ub[i] = ALPHA[i,0]
        ALPHA[i] = 0.5*(lb[i] + ub[i])
    return ALPHA, Best_X_adv 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:22,代碼來源:adaptive_attacks.py

示例5: test_fprop

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder [as 別名]
def test_fprop(self):
        import tensorflow as tf
        model = KerasModelWrapper(self.model)
        x = tf.placeholder(tf.float32, shape=(None, 100))
        out_dict = model.fprop(x)

        self.assertEqual(set(out_dict.keys()), set(['l1', 'l2', 'softmax']))
        # Test the dimension of the hidden represetation
        self.assertEqual(int(out_dict['l1'].shape[1]), 20)
        self.assertEqual(int(out_dict['l2'].shape[1]), 10)

        # Test the caching
        x2 = tf.placeholder(tf.float32, shape=(None, 100))
        out_dict2 = model.fprop(x2)
        self.assertEqual(set(out_dict2.keys()), set(['l1', 'l2', 'softmax']))
        self.assertEqual(int(out_dict2['l1'].shape[1]), 20) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:18,代碼來源:test_utils_keras.py

示例6: test_generate_gives_adversarial_example

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder [as 別名]
def test_generate_gives_adversarial_example(self):

        x_val = np.random.rand(100, 2)
        x_val = np.array(x_val, dtype=np.float32)

        orig_labs = np.argmax(self.sess.run(self.model(x_val)), axis=1)
        feed_labs = np.zeros((100, 2))
        feed_labs[np.arange(100), orig_labs] = 1
        x = tf.placeholder(tf.float32, x_val.shape)
        y = tf.placeholder(tf.float32, feed_labs.shape)

        x_adv_p = self.attack.generate(x, max_iterations=100,
                                       binary_search_steps=3,
                                       initial_const=1,
                                       clip_min=-5, clip_max=5,
                                       batch_size=100, y=y)
        self.assertEqual(x_val.shape, x_adv_p.shape)
        x_adv = self.sess.run(x_adv_p, {x: x_val, y: feed_labs})

        new_labs = np.argmax(self.sess.run(self.model(x_adv)), axis=1)

        self.assertTrue(np.mean(orig_labs == new_labs) < 0.1) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:24,代碼來源:test_attacks.py

示例7: test_generate_targeted_gives_adversarial_example

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder [as 別名]
def test_generate_targeted_gives_adversarial_example(self):
        x_val = np.random.rand(100, 2)
        x_val = np.array(x_val, dtype=np.float32)

        feed_labs = np.zeros((100, 2))
        feed_labs[np.arange(100), np.random.randint(0, 1, 100)] = 1
        x = tf.placeholder(tf.float32, x_val.shape)
        y = tf.placeholder(tf.float32, feed_labs.shape)

        x_adv_p = self.attack.generate(x, max_iterations=100,
                                       binary_search_steps=3,
                                       initial_const=1,
                                       clip_min=-5, clip_max=5,
                                       batch_size=100, y_target=y)
        self.assertEqual(x_val.shape, x_adv_p.shape)
        x_adv = self.sess.run(x_adv_p, {x: x_val, y: feed_labs})

        new_labs = np.argmax(self.sess.run(self.model(x_adv)), axis=1)

        self.assertTrue(np.mean(np.argmax(feed_labs, axis=1) == new_labs)
                        > 0.9) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:23,代碼來源:test_attacks.py

示例8: jacobian_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder [as 別名]
def jacobian_graph(predictions, x, nb_classes):
    """
    Create the Jacobian graph to be ran later in a TF session
    :param predictions: the model's symbolic output (linear output,
        pre-softmax)
    :param x: the input placeholder
    :param nb_classes: the number of classes the model has
    :return:
    """
    # This function will return a list of TF gradients
    list_derivatives = []

    # Define the TF graph elements to compute our derivatives for each class
    for class_ind in xrange(nb_classes):
        derivatives, = tf.gradients(predictions[:, class_ind], x)
        list_derivatives.append(derivatives)

    return list_derivatives 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:20,代碼來源:attacks_tf.py

示例9: network_surgery

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder [as 別名]
def network_surgery():
    tf.reset_default_graph()
    inputs = tf.placeholder(tf.float32,
                            shape=(None, 131072, 4),
                            name='inputs')
    targets = tf.placeholder(tf.float32, shape=(None, 1024, 4229),
                             name='targets')
    targets_na = tf.placeholder(tf.bool, shape=(None, 1024), name="targets_na")
    preds_adhoc = tf.placeholder(tf.float32, shape=(None, 960, 4229), name="Placeholder_15")


    saver = tf.train.import_meta_graph("model_files/model.tf.meta",
                                       input_map={'Placeholder_15:0': preds_adhoc,
                                                  'Placeholder:0': targets_na,
                                                  'inputs:0': inputs,
                                                  'targets:0': targets
                                       })

    ops = tf.get_default_graph().get_operations()

    out = tf.train.export_meta_graph(filename='model_files/model.tf-modified.meta', as_text=True)

    ops[:15] 
開發者ID:kipoi,項目名稱:models,代碼行數:25,代碼來源:test_model.py

示例10: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder [as 別名]
def __init__(self,
                 channel_1_num,
                 channel_2_num,
                 conv_size,
                 hidden_size,
                 pool_size,
                 learning_rate,
                 x_dim=784,
                 y_dim=10):
        self.channel_1_num = channel_1_num
        self.channel_2_num = channel_2_num
        self.conv_size = conv_size
        self.hidden_size = hidden_size
        self.pool_size = pool_size
        self.learning_rate = learning_rate
        self.x_dim = x_dim
        self.y_dim = y_dim

        self.images = tf.placeholder(tf.float32, [None, self.x_dim], name='input_x')
        self.labels = tf.placeholder(tf.float32, [None, self.y_dim], name='input_y')
        self.keep_prob = tf.placeholder(tf.float32, name='keep_prob')

        self.train_step = None
        self.accuracy = None 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:26,代碼來源:2_mnist.py

示例11: createLinearModel

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder [as 別名]
def createLinearModel(dimension):
    np.random.seed(1024)
    # 定義 x 和 y
    x = tf.placeholder(tf.float64, shape=[None, dimension], name='x')
    # 寫成矩陣形式會大大加快運算速度
    y = tf.placeholder(tf.float64, shape=[None, 1], name='y')
    # 定義參數估計值和預測值
    betaPred = tf.Variable(np.random.random([dimension, 1]))
    yPred = tf.matmul(x, betaPred, name='y_pred')
    # 定義損失函數
    loss = tf.reduce_mean(tf.square(yPred - y))
    model = {
        'loss_function': loss,
        'independent_variable': x,
        'dependent_variable': y,
        'prediction': yPred,
        'model_params': betaPred
    }
    return model 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:21,代碼來源:2_tf_linear.py

示例12: setup_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder [as 別名]
def setup_graph(self, input_audio_batch, target_phrase): 
        batch_size = input_audio_batch.shape[0]
        weird = (input_audio_batch.shape[1] - 1) // 320 
        logits_arg2 = np.tile(weird, batch_size)
        dense_arg1 = np.array(np.tile(target_phrase, (batch_size, 1)), dtype=np.int32)
        dense_arg2 = np.array(np.tile(target_phrase.shape[0], batch_size), dtype=np.int32)
        
        pass_in = np.clip(input_audio_batch, -2**15, 2**15-1)
        seq_len = np.tile(weird, batch_size).astype(np.int32)
        
        with tf.variable_scope('', reuse=tf.AUTO_REUSE):
            
            inputs = tf.placeholder(tf.float32, shape=pass_in.shape, name='a')
            len_batch = tf.placeholder(tf.float32, name='b')
            arg2_logits = tf.placeholder(tf.int32, shape=logits_arg2.shape, name='c')
            arg1_dense = tf.placeholder(tf.float32, shape=dense_arg1.shape, name='d')
            arg2_dense = tf.placeholder(tf.int32, shape=dense_arg2.shape, name='e')
            len_seq = tf.placeholder(tf.int32, shape=seq_len.shape, name='f')
            
            logits = get_logits(inputs, arg2_logits)
            target = ctc_label_dense_to_sparse(arg1_dense, arg2_dense, len_batch)
            ctcloss = tf.nn.ctc_loss(labels=tf.cast(target, tf.int32), inputs=logits, sequence_length=len_seq)
            decoded, _ = tf.nn.ctc_greedy_decoder(logits, arg2_logits, merge_repeated=True)
            
            sess = tf.Session()
            saver = tf.train.Saver(tf.global_variables())
            saver.restore(sess, "models/session_dump")
            
        func1 = lambda a, b, c, d, e, f: sess.run(ctcloss, 
            feed_dict={inputs: a, len_batch: b, arg2_logits: c, arg1_dense: d, arg2_dense: e, len_seq: f})
        func2 = lambda a, b, c, d, e, f: sess.run([ctcloss, decoded], 
            feed_dict={inputs: a, len_batch: b, arg2_logits: c, arg1_dense: d, arg2_dense: e, len_seq: f})
        return (func1, func2) 
開發者ID:rtaori,項目名稱:Black-Box-Audio,代碼行數:35,代碼來源:run_audio_attack.py

示例13: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder [as 別名]
def __init__(self, config):

		entity_total = config.entity
		relation_total = config.relation
		batch_size = config.batch_size
		size = config.hidden_size
		margin = config.margin

		self.pos_h = tf.placeholder(tf.int32, [None])
		self.pos_t = tf.placeholder(tf.int32, [None])
		self.pos_r = tf.placeholder(tf.int32, [None])

		self.neg_h = tf.placeholder(tf.int32, [None])
		self.neg_t = tf.placeholder(tf.int32, [None])
		self.neg_r = tf.placeholder(tf.int32, [None])

		with tf.name_scope("embedding"):
			self.ent_embeddings = tf.get_variable(name = "ent_embedding", shape = [entity_total, size], initializer = tf.contrib.layers.xavier_initializer(uniform = False))
			self.rel_embeddings = tf.get_variable(name = "rel_embedding", shape = [relation_total, size], initializer = tf.contrib.layers.xavier_initializer(uniform = False))
			pos_h_e = tf.nn.embedding_lookup(self.ent_embeddings, self.pos_h)
			pos_t_e = tf.nn.embedding_lookup(self.ent_embeddings, self.pos_t)
			pos_r_e = tf.nn.embedding_lookup(self.rel_embeddings, self.pos_r)
			neg_h_e = tf.nn.embedding_lookup(self.ent_embeddings, self.neg_h)
			neg_t_e = tf.nn.embedding_lookup(self.ent_embeddings, self.neg_t)
			neg_r_e = tf.nn.embedding_lookup(self.rel_embeddings, self.neg_r)

		if config.L1_flag:
			pos = tf.reduce_sum(abs(pos_h_e + pos_r_e - pos_t_e), 1, keep_dims = True)
			neg = tf.reduce_sum(abs(neg_h_e + neg_r_e - neg_t_e), 1, keep_dims = True)
			self.predict = pos
		else:
			pos = tf.reduce_sum((pos_h_e + pos_r_e - pos_t_e) ** 2, 1, keep_dims = True)
			neg = tf.reduce_sum((neg_h_e + neg_r_e - neg_t_e) ** 2, 1, keep_dims = True)
			self.predict = pos

		with tf.name_scope("output"):
			self.loss = tf.reduce_sum(tf.maximum(pos - neg + margin, 0)) 
開發者ID:thunlp,項目名稱:TensorFlow-TransX,代碼行數:39,代碼來源:transE.py

示例14: build_input_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder [as 別名]
def build_input_graph(self, vocab_size, emb_size, word_vocab_size, word_emb_size, word_window_size):
        """
        Gather embeddings from lookup tables.
        """
        seq_ids = tf.placeholder(dtype=INT_TYPE, shape=[None, None], name='seq_ids')
        seq_word_ids = [tf.placeholder(dtype=INT_TYPE, shape=[None, None], name='seq_feature_%d_ids' % i)
                        for i in range(word_window_size)]
        embeddings = tf.get_variable('embeddings', [vocab_size, emb_size])
        embedding_output = tf.nn.embedding_lookup([embeddings], seq_ids)
        word_outputs = []
        word_embeddings = tf.get_variable('word_embeddings', [word_vocab_size, word_emb_size])
        for i in range(word_window_size):
            word_outputs.append(tf.nn.embedding_lookup([word_embeddings], seq_word_ids[i]))

        return seq_ids, seq_word_ids, tf.concat([embedding_output] + word_outputs, 2, 'inputs') 
開發者ID:chqiwang,項目名稱:convseg,代碼行數:17,代碼來源:tagger.py

示例15: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import placeholder [as 別名]
def __init__(
        self, sequence_length, vocab_size, embedding_size, hidden_units, l2_reg_lambda, batch_size, trainableEmbeddings):

        # Placeholders for input, output and dropout
        self.input_x1 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x1")
        self.input_x2 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x2")
        self.input_y = tf.placeholder(tf.float32, [None], name="input_y")
        self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")

        # Keeping track of l2 regularization loss (optional)
        l2_loss = tf.constant(0.0, name="l2_loss")
          
        # Embedding layer
        with tf.name_scope("embedding"):
            self.W = tf.Variable(
                tf.constant(0.0, shape=[vocab_size, embedding_size]),
                trainable=trainableEmbeddings,name="W")
            self.embedded_words1 = tf.nn.embedding_lookup(self.W, self.input_x1)
            self.embedded_words2 = tf.nn.embedding_lookup(self.W, self.input_x2)
        print self.embedded_words1
        # Create a convolution + maxpool layer for each filter size
        with tf.name_scope("output"):
            self.out1=self.stackedRNN(self.embedded_words1, self.dropout_keep_prob, "side1", embedding_size, sequence_length, hidden_units)
            self.out2=self.stackedRNN(self.embedded_words2, self.dropout_keep_prob, "side2", embedding_size, sequence_length, hidden_units)
            self.distance = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(self.out1,self.out2)),1,keep_dims=True))
            self.distance = tf.div(self.distance, tf.add(tf.sqrt(tf.reduce_sum(tf.square(self.out1),1,keep_dims=True)),tf.sqrt(tf.reduce_sum(tf.square(self.out2),1,keep_dims=True))))
            self.distance = tf.reshape(self.distance, [-1], name="distance")
        with tf.name_scope("loss"):
            self.loss = self.contrastive_loss(self.input_y,self.distance, batch_size)
        #### Accuracy computation is outside of this class.
        with tf.name_scope("accuracy"):
            self.temp_sim = tf.subtract(tf.ones_like(self.distance),tf.rint(self.distance), name="temp_sim") #auto threshold 0.5
            correct_predictions = tf.equal(self.temp_sim, self.input_y)
            self.accuracy=tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy") 
開發者ID:dhwajraj,項目名稱:deep-siamese-text-similarity,代碼行數:36,代碼來源:siamese_network_semantic.py


注:本文中的tensorflow.placeholder方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。