本文整理匯總了Python中tensorflow.parse_single_sequence_example方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.parse_single_sequence_example方法的具體用法?Python tensorflow.parse_single_sequence_example怎麽用?Python tensorflow.parse_single_sequence_example使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.parse_single_sequence_example方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _read_single_sequence_example
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_single_sequence_example [as 別名]
def _read_single_sequence_example(file_list, tokens_shape=None):
"""Reads and parses SequenceExamples from TFRecord-encoded file_list."""
tf.logging.info('Constructing TFRecordReader from files: %s', file_list)
file_queue = tf.train.string_input_producer(file_list)
reader = tf.TFRecordReader()
seq_key, serialized_record = reader.read(file_queue)
ctx, sequence = tf.parse_single_sequence_example(
serialized_record,
sequence_features={
data_utils.SequenceWrapper.F_TOKEN_ID:
tf.FixedLenSequenceFeature(tokens_shape or [], dtype=tf.int64),
data_utils.SequenceWrapper.F_LABEL:
tf.FixedLenSequenceFeature([], dtype=tf.int64),
data_utils.SequenceWrapper.F_WEIGHT:
tf.FixedLenSequenceFeature([], dtype=tf.float32),
})
return seq_key, ctx, sequence
示例2: _parse_record
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_single_sequence_example [as 別名]
def _parse_record(example_proto):
context_features = {
"length": tf.FixedLenFeature([], dtype=tf.int64)
}
sequence_features = {
"tokens": tf.FixedLenSequenceFeature([], dtype=tf.int64),
"labels": tf.FixedLenSequenceFeature([], dtype=tf.int64)
}
context_parsed, sequence_parsed = tf.parse_single_sequence_example(serialized=example_proto,
context_features=context_features, sequence_features=sequence_features)
return context_parsed['length'], sequence_parsed['tokens'], sequence_parsed['labels']
# Read training data from TFRecord file, shuffle, loop over data infinitely and
# pad to the longest sentence
示例3: parse_sequence_example
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_single_sequence_example [as 別名]
def parse_sequence_example(serialized_example, num_views):
"""Parses a serialized sequence example into views, sequence length data."""
context_features = {
'task': tf.FixedLenFeature(shape=[], dtype=tf.string),
'len': tf.FixedLenFeature(shape=[], dtype=tf.int64)
}
view_names = ['view%d' % i for i in range(num_views)]
fixed_features = [
tf.FixedLenSequenceFeature(
shape=[], dtype=tf.string) for _ in range(len(view_names))]
sequence_features = dict(zip(view_names, fixed_features))
context_parse, sequence_parse = tf.parse_single_sequence_example(
serialized=serialized_example,
context_features=context_features,
sequence_features=sequence_features)
views = tf.stack([sequence_parse[v] for v in view_names])
lens = [sequence_parse[v].get_shape().as_list()[0] for v in view_names]
assert len(set(lens)) == 1
seq_len = tf.shape(sequence_parse[v])[0]
return context_parse, views, seq_len
示例4: _assign_queue
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_single_sequence_example [as 別名]
def _assign_queue(self, proto_text):
"""
Args:
proto_text: object to be enqueued and managed by parallel threads.
"""
with tf.variable_scope('shuffle_queue'):
queue = tf.RandomShuffleQueue(
capacity=self.capacity,
min_after_dequeue=10*self.batch_size,
dtypes=tf.string, shapes=[()])
enqueue_op = queue.enqueue(proto_text)
example_dq = queue.dequeue()
qr = tf.train.QueueRunner(queue, [enqueue_op] * 4)
tf.train.add_queue_runner(qr)
_sequence_lengths, _sequences = tf.parse_single_sequence_example(
serialized=example_dq,
context_features=LENGTHS,
sequence_features=SEQUENCES)
return _sequence_lengths, _sequences
示例5: deserialize_fasta_sequence
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_single_sequence_example [as 別名]
def deserialize_fasta_sequence(example):
context = {
'protein_length': tf.FixedLenFeature([1], tf.int64),
'id': tf.FixedLenFeature([], tf.string)
}
features = {
'primary': tf.FixedLenSequenceFeature([1], tf.int64),
}
context, features = tf.parse_single_sequence_example(
example,
context_features=context,
sequence_features=features
)
return {'id': context['id'],
'primary': tf.to_int32(features['primary'][:, 0]),
'protein_length': tf.to_int32(context['protein_length'][0])}
示例6: parse_sequence_example
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_single_sequence_example [as 別名]
def parse_sequence_example(serialized_example, num_views):
"""Parses a serialized sequence example into views, sequence length data."""
context_features = {
'task': tf.FixedLenFeature(shape=[], dtype=tf.string),
'len': tf.FixedLenFeature(shape=[], dtype=tf.int64)
}
view_names = ['view%d' % i for i in range(num_views)]
fixed_features = [
tf.FixedLenSequenceFeature(
shape=[], dtype=tf.string) for _ in range(len(view_names))]
sequence_features = dict(zip(view_names, fixed_features))
context_parse, sequence_parse = tf.parse_single_sequence_example(
serialized=serialized_example,
context_features=context_features,
sequence_features=sequence_features)
views = tf.stack([sequence_parse[v] for v in view_names])
lens = [sequence_parse[v].get_shape().as_list()[0] for v in view_names]
assert len(set(lens)) == 1
seq_len = tf.shape(sequence_parse[view_names[-1]])[0]
return context_parse, views, seq_len
示例7: _read_sequence_example
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_single_sequence_example [as 別名]
def _read_sequence_example(filename_queue,
n_labels=50, n_samples=59049, n_segments=10):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
context, sequence = tf.parse_single_sequence_example(
serialized_example,
context_features={
'raw_labels': tf.FixedLenFeature([], dtype=tf.string)
},
sequence_features={
'raw_segments': tf.FixedLenSequenceFeature([], dtype=tf.string)
})
segments = tf.decode_raw(sequence['raw_segments'], tf.float32)
segments.set_shape([n_segments, n_samples])
labels = tf.decode_raw(context['raw_labels'], tf.uint8)
labels.set_shape([n_labels])
labels = tf.cast(labels, tf.float32)
return segments, labels
示例8: parse_fn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_single_sequence_example [as 別名]
def parse_fn(serialized_example):
"""Parse a serialized example."""
# user_id is not currently used.
context_features = {
'user_id': tf.FixedLenFeature([], dtype=tf.int64)
}
sequence_features = {
'movie_ids': tf.FixedLenSequenceFeature([], dtype=tf.int64)
}
parsed_feature, parsed_sequence_feature = tf.parse_single_sequence_example(
serialized=serialized_example,
context_features=context_features,
sequence_features=sequence_features
)
movie_ids = parsed_sequence_feature['movie_ids']
return movie_ids
示例9: read_dataset
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_single_sequence_example [as 別名]
def read_dataset(filename, num_channels=39):
"""Read data from tfrecord file."""
def parse_fn(example_proto):
"""Parse function for reading single sequence example."""
sequence_features = {
'inputs': tf.FixedLenSequenceFeature(shape=[num_channels], dtype=tf.float32),
'labels': tf.FixedLenSequenceFeature(shape=[], dtype=tf.string)
}
context, sequence = tf.parse_single_sequence_example(
serialized=example_proto,
sequence_features=sequence_features
)
return sequence['inputs'], sequence['labels']
dataset = tf.data.TFRecordDataset(filename)
dataset = dataset.map(parse_fn)
return dataset
示例10: example_parser
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_single_sequence_example [as 別名]
def example_parser(self, filename_queue):
reader = tf.TFRecordReader()
key, record_string = reader.read(filename_queue)
features = {
'labels': tf.FixedLenSequenceFeature([], tf.int64),
'tokens': tf.FixedLenSequenceFeature([], tf.int64),
'shapes': tf.FixedLenSequenceFeature([], tf.int64),
'chars': tf.FixedLenSequenceFeature([], tf.int64),
'seq_len': tf.FixedLenSequenceFeature([], tf.int64),
'tok_len': tf.FixedLenSequenceFeature([], tf.int64),
}
_, example = tf.parse_single_sequence_example(serialized=record_string, sequence_features=features)
labels = example['labels']
tokens = example['tokens']
shapes = example['shapes']
chars = example['chars']
seq_len = example['seq_len']
tok_len = example['tok_len']
# context = c['context']
return labels, tokens, shapes, chars, seq_len, tok_len
# return labels, tokens, labels, labels, labels
示例11: ner_example_parser
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_single_sequence_example [as 別名]
def ner_example_parser(filename_queue):
reader = tf.TFRecordReader()
key, record_string = reader.read(filename_queue)
# Define how to parse the example
context_features = {
'seq_len': tf.FixedLenFeature([], tf.int64),
}
sequence_features = {
"tokens": tf.FixedLenSequenceFeature([], dtype=tf.int64),
"ner_labels": tf.FixedLenSequenceFeature([], dtype=tf.int64),
"entities": tf.FixedLenSequenceFeature([], dtype=tf.int64),
}
context_parsed, sequence_parsed = tf.parse_single_sequence_example(serialized=record_string,
context_features=context_features,
sequence_features=sequence_features)
tokens = sequence_parsed['tokens']
ner_labels = sequence_parsed['ner_labels']
entities = sequence_parsed['entities']
seq_len = context_parsed['seq_len']
return [tokens, ner_labels, entities, seq_len]
示例12: parse_sentence
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_single_sequence_example [as 別名]
def parse_sentence(serialized):
"""Parses a tensorflow.SequenceExample into an caption.
Args:
serialized: A scalar string Tensor; a single serialized SequenceExample.
Returns:
key: The keywords in a sentence.
num_key: The number of keywords.
sentence: A description.
sentence_length: The length of the description.
"""
context, sequence = tf.parse_single_sequence_example(
serialized,
context_features={},
sequence_features={
'key': tf.FixedLenSequenceFeature([], dtype=tf.int64),
'sentence': tf.FixedLenSequenceFeature([], dtype=tf.int64),
})
key = tf.to_int32(sequence['key'])
key = tf.random_shuffle(key)
sentence = tf.to_int32(sequence['sentence'])
return key, tf.shape(key)[0], sentence, tf.shape(sentence)[0]
示例13: parse_image
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_single_sequence_example [as 別名]
def parse_image(serialized, tf):
"""Parses a tensorflow.SequenceExample into an image and detected objects.
Args:
serialized: A scalar string Tensor; a single serialized SequenceExample.
Returns:
encoded_image: A scalar string Tensor containing a JPEG encoded image.
classes: A 1-D int64 Tensor containing the detected objects.
scores: A 1-D float32 Tensor containing the detection scores.
"""
context, sequence = tf.parse_single_sequence_example(
serialized,
sequence_features={
'classes': tf.FixedLenSequenceFeature([], dtype=tf.int64),
'scores': tf.FixedLenSequenceFeature([], dtype=tf.float32),
})
classes = tf.to_int32(sequence['classes'])
scores = sequence['scores']
return classes, scores
示例14: parse_image
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_single_sequence_example [as 別名]
def parse_image(serialized):
"""Parses a tensorflow.SequenceExample into an image and detected objects.
Args:
serialized: A scalar string Tensor; a single serialized SequenceExample.
Returns:
name: A scalar string Tensor containing the image name.
classes: A 1-D int64 Tensor containing the detected objects.
scores: A 1-D float32 Tensor containing the detection scores.
"""
context, sequence = tf.parse_single_sequence_example(
serialized,
context_features={
'image/name': tf.FixedLenFeature([], dtype=tf.string)
},
sequence_features={
'classes': tf.FixedLenSequenceFeature([], dtype=tf.int64),
'scores': tf.FixedLenSequenceFeature([], dtype=tf.float32),
})
name = context['image/name']
classes = tf.to_int32(sequence['classes'])
scores = sequence['scores']
return name, classes, scores
示例15: parse_image
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_single_sequence_example [as 別名]
def parse_image(serialized):
"""Parses a tensorflow.SequenceExample into an image and detected objects.
Args:
serialized: A scalar string Tensor; a single serialized SequenceExample.
Returns:
encoded_image: A scalar string Tensor containing a JPEG encoded image.
classes: A 1-D int64 Tensor containing the detected objects.
scores: A 1-D float32 Tensor containing the detection scores.
"""
context, sequence = tf.parse_single_sequence_example(
serialized,
context_features={
'image/data': tf.FixedLenFeature([], dtype=tf.string)
},
sequence_features={
'classes': tf.FixedLenSequenceFeature([], dtype=tf.int64),
'scores': tf.FixedLenSequenceFeature([], dtype=tf.float32),
})
encoded_image = context['image/data']
classes = tf.to_int32(sequence['classes'])
scores = sequence['scores']
return encoded_image, classes, scores