本文整理匯總了Python中tensorflow.parse_example方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.parse_example方法的具體用法?Python tensorflow.parse_example怎麽用?Python tensorflow.parse_example使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.parse_example方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _extract_features_batch
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_example [as 別名]
def _extract_features_batch(self, serialized_batch):
features = tf.parse_example(
serialized_batch,
features={'images': tf.FixedLenFeature([], tf.string),
'imagepaths': tf.FixedLenFeature([], tf.string),
'labels': tf.VarLenFeature(tf.int64),
})
bs = features['images'].shape[0]
images = tf.decode_raw(features['images'], tf.uint8)
w, h = tuple(CFG.ARCH.INPUT_SIZE)
images = tf.cast(x=images, dtype=tf.float32)
#images = tf.subtract(tf.divide(images, 128.0), 1.0)
images = tf.reshape(images, [bs, h, -1, CFG.ARCH.INPUT_CHANNELS])
labels = features['labels']
labels = tf.cast(labels, tf.int32)
imagepaths = features['imagepaths']
return images, labels, imagepaths
開發者ID:Mingtzge,項目名稱:2019-CCF-BDCI-OCR-MCZJ-OCR-IdentificationIDElement,代碼行數:23,代碼來源:read_tfrecord.py
示例2: prepare_serialized_examples
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_example [as 別名]
def prepare_serialized_examples(self, serialized_examples):
# set the mapping from the fields to data types in the proto
num_features = len(self.feature_names)
assert num_features > 0, "self.feature_names is empty!"
assert len(self.feature_names) == len(self.feature_sizes), \
"length of feature_names (={}) != length of feature_sizes (={})".format( \
len(self.feature_names), len(self.feature_sizes))
feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
"labels": tf.VarLenFeature(tf.int64)}
for feature_index in range(num_features):
feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
[self.feature_sizes[feature_index]], tf.float32)
features = tf.parse_example(serialized_examples, features=feature_map)
labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
labels.set_shape([None, self.num_classes])
concatenated_features = tf.concat([
features[feature_name] for feature_name in self.feature_names], 1)
return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
示例3: example_serving_input_fn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_example [as 別名]
def example_serving_input_fn(default_batch_size=None):
"""Build the serving inputs.
Args:
default_batch_size (int): Batch size for the tf.placeholder shape.
Returns:
A tuple of dictionaries.
"""
feature_spec = {}
for feat in CONTINUOUS_COLS:
feature_spec[feat] = tf.FixedLenFeature(shape=[], dtype=tf.int64)
for feat, _ in CATEGORICAL_COLS:
feature_spec[feat] = tf.FixedLenFeature(shape=[], dtype=tf.string)
example_bytestring = tf.placeholder(
shape=[default_batch_size],
dtype=tf.string,
)
features = tf.parse_example(example_bytestring, feature_spec)
return features, {'example': example_bytestring}
示例4: example_serving_input_receiver_fn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_example [as 別名]
def example_serving_input_receiver_fn():
"""Creating an ServingInputReceiver object for TFRecords data.
Returns:
ServingInputReceiver
"""
# Note that the inputs are raw features, not transformed features.
receiver_tensors = tf.placeholder(shape=[None], dtype=tf.string)
features = tf.parse_example(
receiver_tensors,
features=get_feature_spec(is_serving=True)
)
for key in features:
features[key] = tf.expand_dims(features[key], -1)
return tf.estimator.export.ServingInputReceiver(
features=process_features(features),
receiver_tensors={'example_proto': receiver_tensors}
)
示例5: example_evaluating_input_receiver_fn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_example [as 別名]
def example_evaluating_input_receiver_fn():
"""Creating an EvalInputReceiver object for TFRecords data.
Returns:
EvalInputReceiver
"""
tf_example = tf.placeholder(shape=[None], dtype=tf.string)
features = tf.parse_example(
tf_example,
features=get_feature_spec(is_serving=False))
for key in features:
features[key] = tf.expand_dims(features[key], -1)
return tfma.export.EvalInputReceiver(
features=process_features(features),
receiver_tensors={'examples': tf_example},
labels=features[metadata.TARGET_NAME])
示例6: _decode_record
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_example [as 別名]
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example.
name_to_features = {
"input_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"input_mask":
tf.FixedLenFeature([max_seq_length], tf.int64),
"segment_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"masked_lm_positions":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_ids":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_weights":
tf.FixedLenFeature([max_predictions_per_seq], tf.float32),
"next_sentence_labels":
tf.FixedLenFeature([1], tf.int64),
}
"""
example = tf.parse_example(record, name_to_features)
return example
示例7: _decode_record
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_example [as 別名]
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example.
name_to_features = {
"input_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"input_mask":
tf.FixedLenFeature([max_seq_length], tf.int64),
"segment_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"masked_lm_positions":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_ids":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_weights":
tf.FixedLenFeature([max_predictions_per_seq], tf.float32),
"next_sentence_labels":
tf.FixedLenFeature([1], tf.int64),
}
"""
example = tf.parse_example(record, name_to_features)
return example
示例8: prepare_reader
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_example [as 別名]
def prepare_reader(self, filename_queue, batch_size=1024):
reader = tf.TFRecordReader()
_, serialized_examples = reader.read_up_to(filename_queue, batch_size)
# set the mapping from the fields to data types in the proto
num_features = len(self.feature_names)
assert num_features > 0, "self.feature_names is empty!"
assert len(self.feature_names) == len(self.feature_sizes), \
"length of feature_names (={}) != length of feature_sizes (={})".format( \
len(self.feature_names), len(self.feature_sizes))
feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
"labels": tf.VarLenFeature(tf.int64)}
for feature_index in range(num_features):
feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
[self.feature_sizes[feature_index]], tf.float32)
features = tf.parse_example(serialized_examples, features=feature_map)
labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
labels.set_shape([None, self.num_classes])
concatenated_features = tf.concat([
features[feature_name] for feature_name in self.feature_names], 1)
return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
示例9: batch_parse_tf_example
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_example [as 別名]
def batch_parse_tf_example(batch_size, example_batch):
'''
Args:
example_batch: a batch of tf.Example
Returns:
A tuple (feature_tensor, dict of output tensors)
'''
features = {
'x': tf.FixedLenFeature([], tf.string),
'pi': tf.FixedLenFeature([], tf.string),
'outcome': tf.FixedLenFeature([], tf.float32),
}
parsed = tf.parse_example(example_batch, features)
x = tf.decode_raw(parsed['x'], tf.uint8)
x = tf.cast(x, tf.float32)
x = tf.reshape(x, [batch_size, go.N, go.N,
features_lib.NEW_FEATURES_PLANES])
pi = tf.decode_raw(parsed['pi'], tf.float32)
pi = tf.reshape(pi, [batch_size, go.N * go.N + 1])
outcome = parsed['outcome']
outcome.set_shape([batch_size])
return (x, {'pi_tensor': pi, 'value_tensor': outcome})
示例10: serving_fn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_example [as 別名]
def serving_fn():
"""Returns the ServingInputReceiver for the exported model.
Returns:
A ServingInputReceiver object which may be passed to
`Estimator.export_savedmodel`. A model saved using this receiver may be used
for running OMR.
"""
examples = tf.placeholder(tf.string, shape=[None])
patch_height, patch_width = read_patch_dimensions()
parsed = tf.parse_example(examples, {
'patch': tf.FixedLenFeature((patch_height, patch_width), tf.float32),
})
return tf.estimator.export.ServingInputReceiver(
features={'patch': parsed['patch']},
receiver_tensors=parsed['patch'],
receiver_tensors_alternatives={
'example': examples,
'patch': parsed['patch']
})
示例11: parse_example_batch
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_example [as 別名]
def parse_example_batch(serialized):
"""Parses a batch of tf.Example protos.
Args:
serialized: A 1-D string Tensor; a batch of serialized tf.Example protos.
Returns:
encode: A SentenceBatch of encode sentences.
decode_pre: A SentenceBatch of "previous" sentences to decode.
decode_post: A SentenceBatch of "post" sentences to decode.
"""
features = tf.parse_example(
serialized,
features={"features": tf.VarLenFeature(dtype=tf.int64)}
)
features = features["features"]
def _sparse_to_batch(sparse):
ids = tf.sparse_tensor_to_dense(sparse) # Padding with zeroes.
mask = tf.sparse_to_dense(sparse.indices, sparse.dense_shape,
tf.ones_like(sparse.values, dtype=tf.int32))
return SentenceBatch(ids=ids, mask=mask)
return _sparse_to_batch(features)
示例12: prepare_serialized_examples
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_example [as 別名]
def prepare_serialized_examples(self, serialized_examples):
# set the mapping from the fields to data types in the proto
num_features = len(self.feature_names)
assert num_features > 0, "self.feature_names is empty!"
assert len(self.feature_names) == len(self.feature_sizes), \
"length of feature_names (={}) != length of feature_sizes (={})".format( \
len(self.feature_names), len(self.feature_sizes))
feature_map = {"id": tf.FixedLenFeature([], tf.string),
"labels": tf.VarLenFeature(tf.int64)}
for feature_index in range(num_features):
feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
[self.feature_sizes[feature_index]], tf.float32)
features = tf.parse_example(serialized_examples, features=feature_map)
labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
labels.set_shape([None, self.num_classes])
concatenated_features = tf.concat([
features[feature_name] for feature_name in self.feature_names], 1)
return features["id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
示例13: parse_batch_tf_example
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_example [as 別名]
def parse_batch_tf_example(example_batch):
features = {
'x': tf.FixedLenFeature([], tf.string),
'pi': tf.FixedLenFeature([], tf.string),
'z': tf.FixedLenFeature([], tf.float32),
}
parsed_tensors = tf.parse_example(example_batch, features)
# Get the board state
x = tf.cast(tf.decode_raw(parsed_tensors['x'], tf.uint8), tf.float32)
x = tf.reshape(x, [GLOBAL_PARAMETER_STORE.TRAIN_BATCH_SIZE, GOPARAMETERS.N,
GOPARAMETERS.N, FEATUREPARAMETERS.NUM_CHANNELS])
# Get the policy target, which is the distribution of possible moves
# Each target is a vector of length of board * length of board + 1
distribution_of_moves = tf.decode_raw(parsed_tensors['pi'], tf.float32)
distribution_of_moves = tf.reshape(distribution_of_moves,
[GLOBAL_PARAMETER_STORE.TRAIN_BATCH_SIZE, GOPARAMETERS.N * GOPARAMETERS.N + 1])
# Get the result of the game
# The result is simply a scalar
result_of_game = parsed_tensors['z']
result_of_game.set_shape([GLOBAL_PARAMETER_STORE.TRAIN_BATCH_SIZE])
return (x, {'pi_label': distribution_of_moves, 'z_label': result_of_game})
示例14: _extract_features_batch
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_example [as 別名]
def _extract_features_batch(serialized_batch):
"""
:param serialized_batch:
:return:
"""
features = tf.parse_example(
serialized_batch,
features={'images': tf.FixedLenFeature([], tf.string),
'imagepaths': tf.FixedLenFeature([], tf.string),
'labels': tf.VarLenFeature(tf.int64),
}
)
bs = features['images'].shape[0]
images = tf.decode_raw(features['images'], tf.uint8)
w, h = tuple(CFG.ARCH.INPUT_SIZE)
images = tf.cast(x=images, dtype=tf.float32)
images = tf.reshape(images, [bs, h, w, CFG.ARCH.INPUT_CHANNELS])
labels = features['labels']
labels = tf.cast(labels, tf.int32)
imagepaths = features['imagepaths']
return images, labels, imagepaths
示例15: example_serving_input_fn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parse_example [as 別名]
def example_serving_input_fn():
"""Build the serving inputs."""
example_bytestring = tf.placeholder(
shape=[None],
dtype=tf.string,
)
feature_scalars = tf.parse_example(
example_bytestring,
tf.feature_column.make_parse_example_spec(INPUT_COLUMNS)
)
return tf.estimator.export.ServingInputReceiver(
features,
{'example_proto': example_bytestring}
)
# [START serving-function]