本文整理匯總了Python中tensorflow.parallel_stack方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.parallel_stack方法的具體用法?Python tensorflow.parallel_stack怎麽用?Python tensorflow.parallel_stack使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.parallel_stack方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: to_training_tensor
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parallel_stack [as 別名]
def to_training_tensor(time_ordered_feature_tensor_dicts, feature_name):
""" Calls to_tensors plus converts the data to a single large tensor.
This returns a single tf tensor for a single feature
in a format you can pass directly to a Keras model.
# Arguments
time_ordered_feature_tensor_dicts: A dictionary with keys which are strings and values which are lists of tensors.
feature_name: A string identifying which specific feature in the dictionary to convert.
"""
if feature_name is None or feature_name is '':
return None
# image of a clear scene view, originally from 'view_clear_scene' step,
# There is also a move_to_grasp versions copied from view_clear_scene then repeated once for each time step.
op_batch = GraspDataset.to_tensors(time_ordered_feature_tensor_dicts, feature_name)
# make one long list from each list of lists
op_batch = list(itertools.chain.from_iterable(op_batch))
# stack all the data in a way that will let it run in parallel
op_batch = tf.parallel_stack(op_batch)
return op_batch
示例2: input_fn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parallel_stack [as 別名]
def input_fn(subset, num_shards):
"""Create input graph for model.
Args:
subset: one of 'train', 'validate' and 'eval'.
num_shards: num of towers participating in data-parallel training.
Returns:
two lists of tensors for features and labels, each of num_shards length.
"""
if subset == 'train':
batch_size = FLAGS.train_batch_size
elif subset == 'validate' or subset == 'eval':
batch_size = FLAGS.eval_batch_size
else:
raise ValueError('Subset must be one of \'train\', \'validate\' and \'eval\'')
with tf.device('/cpu:0'):
use_distortion = subset == 'train' and FLAGS.use_distortion_for_training
dataset = cifar10.Cifar10DataSet(FLAGS.data_dir, subset, use_distortion)
image_batch, label_batch = dataset.make_batch(batch_size)
if num_shards <= 1:
# No GPU available or only 1 GPU.
return [image_batch], [label_batch]
# Note that passing num=batch_size is safe here, even though
# dataset.batch(batch_size) can, in some cases, return fewer than batch_size
# examples. This is because it does so only when repeating for a limited
# number of epochs, but our dataset repeats forever.
image_batch = tf.unstack(image_batch, num=batch_size, axis=0)
label_batch = tf.unstack(label_batch, num=batch_size, axis=0)
feature_shards = [[] for i in range(num_shards)]
label_shards = [[] for i in range(num_shards)]
for i in xrange(batch_size):
idx = i % num_shards
feature_shards[idx].append(image_batch[i])
label_shards[idx].append(label_batch[i])
feature_shards = [tf.parallel_stack(x) for x in feature_shards]
label_shards = [tf.parallel_stack(x) for x in label_shards]
return feature_shards, label_shards
示例3: get_log_probabilities
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parallel_stack [as 別名]
def get_log_probabilities(self, data):
tf_log_probabilities = []
for dim in range(self.dims):
tf_log_means = tf.log(self.tf_means[dim])
tf_log_probabilities.append(
tf.gather(tf_log_means, data[0][:, dim])
)
return tf.reduce_sum(tf.parallel_stack(tf_log_probabilities), axis=0)
示例4: get_parameter_updaters
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parallel_stack [as 別名]
def get_parameter_updaters(self, data, gamma_weighted, gamma_sum):
tf_parameter_updaters = []
for dim in range(self.dims):
tf_partition = tf.dynamic_partition(gamma_weighted, data[0][:, dim], self.counts[dim])
tf_new_means = tf.parallel_stack([tf.reduce_sum(p) for p in tf_partition])
tf_parameter_updaters.append(self.tf_means[dim].assign(tf_new_means))
return tf_parameter_updaters
示例5: minibatch
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parallel_stack [as 別名]
def minibatch(self, dataset, subset):
with tf.compat.v1.name_scope('batch_processing'):
images = [[] for i in range(self.device_count)]
labels = [[] for i in range(self.device_count)]
record_input = data_flow_ops.RecordInput(
file_pattern=dataset.tf_record_pattern(subset),
seed=randint(0, 9000),
parallelism=64,
buffer_size=10000,
batch_size=self.batch_size,
name='record_input')
records = record_input.get_yield_op()
records = tf.split(records, self.batch_size, 0)
records = [tf.reshape(record, []) for record in records]
for i in xrange(self.batch_size):
value = records[i]
image_buffer, label_index, bbox, _ = parse_example_proto(value)
image = self.preprocess(image_buffer, bbox, i % 4)
device_index = i % self.device_count
images[device_index].append(image)
labels[device_index].append(label_index)
label_index_batch = [None] * self.device_count
for device_index in xrange(self.device_count):
images[device_index] = tf.parallel_stack(images[device_index])
label_index_batch[device_index] = tf.concat(labels[device_index], 0)
# dynamic_pad=True) # HACK TESTING dynamic_pad=True
images[device_index] = tf.cast(images[device_index], self.dtype)
depth = 3
images[device_index] = tf.reshape(
images[device_index],
shape=[self.batch_size_per_device, self.height, self.width, depth])
label_index_batch[device_index] = tf.reshape(
label_index_batch[device_index], [self.batch_size_per_device])
# Display the training images in the visualizer.
# tf.summary.image('images', images)
return images, label_index_batch, records
示例6: minibatch
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parallel_stack [as 別名]
def minibatch(self, dataset, subset):
with tf.compat.v1.name_scope('batch_processing'):
images = [[] for i in range(self.device_count)]
labels = [[] for i in range(self.device_count)]
record_input = data_flow_ops.RecordInput(
file_pattern=dataset.tf_record_pattern(subset),
seed=randint(0, 9000),
parallelism=64,
buffer_size=10000,
batch_size=self.batch_size,
name='record_input')
records = record_input.get_yield_op()
records = tf.split(records, self.batch_size, 0)
records = [tf.reshape(record, []) for record in records]
for i in xrange(self.batch_size):
value = records[i]
image_buffer, label_index, bbox, _ = parse_example_proto(value)
image = self.preprocess(image_buffer, bbox, i % 4)
device_index = i % self.device_count
images[device_index].append(image)
labels[device_index].append(label_index)
label_index_batch = [None] * self.device_count
for device_index in xrange(self.device_count):
images[device_index] = tf.parallel_stack(images[device_index])
label_index_batch[device_index] = tf.concat(labels[device_index], 0)
# dynamic_pad=True) # HACK TESTING dynamic_pad=True
images[device_index] = tf.cast(images[device_index], self.dtype)
depth = 3
images[device_index] = tf.reshape(
images[device_index],
shape=[self.batch_size_per_device, self.height, self.width, depth])
label_index_batch[device_index] = tf.reshape(
label_index_batch[device_index], [self.batch_size_per_device])
# Display the training images in the visualizer.
# tf.summary.image('images', images)
return images, label_index_batch
示例7: input_fn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parallel_stack [as 別名]
def input_fn(data_dir,
subset,
num_shards,
batch_size,
use_distortion_for_training=True):
"""Create input graph for model.
Args:
data_dir: Directory where TFRecords representing the dataset are located.
subset: one of 'train', 'validate' and 'eval'.
num_shards: num of towers participating in data-parallel training.
batch_size: total batch size for training to be divided by the number of
shards.
use_distortion_for_training: True to use distortions.
Returns:
two lists of tensors for features and labels, each of num_shards length.
"""
with tf.device('/cpu:0'):
use_distortion = subset == 'train' and use_distortion_for_training
dataset = cifar10.Cifar10DataSet(data_dir, subset, use_distortion)
image_batch, label_batch = dataset.make_batch(batch_size)
if num_shards <= 1:
# No GPU available or only 1 GPU.
return [image_batch], [label_batch]
# Note that passing num=batch_size is safe here, even though
# dataset.batch(batch_size) can, in some cases, return fewer than batch_size
# examples. This is because it does so only when repeating for a limited
# number of epochs, but our dataset repeats forever.
image_batch = tf.unstack(image_batch, num=batch_size, axis=0)
label_batch = tf.unstack(label_batch, num=batch_size, axis=0)
feature_shards = [[] for i in range(num_shards)]
label_shards = [[] for i in range(num_shards)]
for i in xrange(batch_size):
idx = i % num_shards
feature_shards[idx].append(image_batch[i])
label_shards[idx].append(label_batch[i])
feature_shards = [tf.parallel_stack(x) for x in feature_shards]
label_shards = [tf.parallel_stack(x) for x in label_shards]
return feature_shards, label_shards
示例8: minibatch
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parallel_stack [as 別名]
def minibatch(self, dataset, subset, use_datasets, cache_data,
shift_ratio=-1):
del dataset, use_datasets, cache_data, shift_ratio
if (not hasattr(self, 'fake_images') or
not hasattr(self, 'fake_labels')):
raise ValueError(
'Must call set_fake_data() before calling minibatch '
'on TestImagePreprocessor')
if self.expected_subset is not None:
assert subset == self.expected_subset
with tf.name_scope('batch_processing'):
image_slice, label_slice = tf.train.slice_input_producer(
[self.fake_images, self.fake_labels],
shuffle=False,
name='image_slice')
raw_images, raw_labels = tf.train.batch(
[image_slice, label_slice], batch_size=self.batch_size,
name='image_batch')
images = [[] for _ in range(self.num_splits)]
labels = [[] for _ in range(self.num_splits)]
for i in xrange(self.batch_size):
split_index = i % self.num_splits
raw_image = tf.cast(raw_images[i], self.dtype)
images[split_index].append(raw_image)
labels[split_index].append(raw_labels[i])
for split_index in xrange(self.num_splits):
images[split_index] = tf.parallel_stack(images[split_index])
labels[split_index] = tf.parallel_stack(labels[split_index])
return images, labels
示例9: minibatch
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parallel_stack [as 別名]
def minibatch(self, dataset, subset, use_datasets, cache_data,
shift_ratio=-1):
del dataset, use_datasets, cache_data, shift_ratio
if (not hasattr(self, 'fake_images') or
not hasattr(self, 'fake_labels')):
raise ValueError('Must call set_fake_data() before calling minibatch '
'on TestImagePreprocessor')
if self.expected_subset is not None:
assert subset == self.expected_subset
with tf.name_scope('batch_processing'):
image_slice, label_slice = tf.train.slice_input_producer(
[self.fake_images, self.fake_labels],
shuffle=False,
name='image_slice')
raw_images, raw_labels = tf.train.batch(
[image_slice, label_slice], batch_size=self.batch_size,
name='image_batch')
images = [[] for _ in range(self.num_splits)]
labels = [[] for _ in range(self.num_splits)]
for i in xrange(self.batch_size):
split_index = i % self.num_splits
raw_image = tf.cast(raw_images[i], self.dtype)
images[split_index].append(raw_image)
labels[split_index].append(raw_labels[i])
for split_index in xrange(self.num_splits):
images[split_index] = tf.parallel_stack(images[split_index])
labels[split_index] = tf.parallel_stack(labels[split_index])
return images, labels
示例10: minibatch
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parallel_stack [as 別名]
def minibatch(self, dataset, subset, use_datasets, cache_data,
shift_ratio=-1):
del dataset, use_datasets, cache_data, shift_ratio
if (not hasattr(self, 'fake_images') or not hasattr(self, 'fake_labels')):
raise ValueError('Must call set_fake_data() before calling minibatch '
'on TestImagePreprocessor')
if self.expected_subset is not None:
assert subset == self.expected_subset
with tf.name_scope('batch_processing'):
image_slice, label_slice = tf.train.slice_input_producer(
[self.fake_images, self.fake_labels],
shuffle=False,
name='image_slice')
raw_images, raw_labels = tf.train.batch(
[image_slice, label_slice], batch_size=self.batch_size,
name='image_batch')
images = [[] for _ in range(self.num_splits)]
labels = [[] for _ in range(self.num_splits)]
for i in xrange(self.batch_size):
split_index = i % self.num_splits
raw_image = tf.cast(raw_images[i], self.dtype)
images[split_index].append(raw_image)
labels[split_index].append(raw_labels[i])
for split_index in xrange(self.num_splits):
images[split_index] = tf.parallel_stack(images[split_index])
labels[split_index] = tf.parallel_stack(labels[split_index])
return images, labels
示例11: device_minibatches
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parallel_stack [as 別名]
def device_minibatches(self, total_batch_size):
record_input = data_flow_ops.RecordInput(
file_pattern=os.path.join(FLAGS.data_dir, '%s-*' % self.subset),
parallelism=64,
# Note: This causes deadlock during init if larger than dataset
buffer_size=FLAGS.input_buffer_size,
batch_size=total_batch_size)
records = record_input.get_yield_op()
# Split batch into individual images
records = tf.split(records, total_batch_size, 0)
records = [tf.reshape(record, []) for record in records]
# Deserialize and preprocess images into batches for each device
images = defaultdict(list)
labels = defaultdict(list)
with tf.name_scope('input_pipeline'):
for i, record in enumerate(records):
imgdata, label, bbox, text = deserialize_image_record(record)
image = self.preprocess(imgdata, bbox, thread_id=i)
label -= 1 # Change to 0-based (don't use background class)
device_num = i % self.num_devices
images[device_num].append(image)
labels[device_num].append(label)
# Stack images back into a sub-batch for each device
for device_num in range(self.num_devices):
images[device_num] = tf.parallel_stack(images[device_num])
labels[device_num] = tf.concat(labels[device_num], 0)
images[device_num] = tf.reshape(images[device_num],
[-1, self.height, self.width, 3])
images[device_num] = tf.clip_by_value(images[device_num], 0., 255.)
images[device_num] = tf.cast(images[device_num], self.dtype)
return images, labels
示例12: minibatch
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parallel_stack [as 別名]
def minibatch(self, dataset, subset, use_datasets, cache_data,
shift_ratio=0):
"""Get test image batches."""
del dataset, use_datasets, cache_data
if (not hasattr(self, 'fake_images') or
not hasattr(self, 'fake_labels')):
raise ValueError('Must call set_fake_data() before calling minibatch '
'on TestImagePreprocessor')
if self.expected_subset is not None:
assert subset == self.expected_subset
shift_ratio = shift_ratio or self.shift_ratio
fake_images = cnn_util.roll_numpy_batches(self.fake_images, self.batch_size,
shift_ratio)
fake_labels = cnn_util.roll_numpy_batches(self.fake_labels, self.batch_size,
shift_ratio)
with tf.name_scope('batch_processing'):
image_slice, label_slice = tf.train.slice_input_producer(
[fake_images, fake_labels],
shuffle=False,
name='image_slice')
raw_images, raw_labels = tf.train.batch(
[image_slice, label_slice], batch_size=self.batch_size,
name='image_batch')
images = [[] for _ in range(self.num_splits)]
labels = [[] for _ in range(self.num_splits)]
for i in xrange(self.batch_size):
split_index = i % self.num_splits
raw_image = tf.cast(raw_images[i], self.dtype)
images[split_index].append(raw_image)
labels[split_index].append(raw_labels[i])
for split_index in xrange(self.num_splits):
images[split_index] = tf.parallel_stack(images[split_index])
labels[split_index] = tf.parallel_stack(labels[split_index])
return images, labels
示例13: _get_interp_idxs_weights_2d
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parallel_stack [as 別名]
def _get_interp_idxs_weights_2d(x, xp, y, yp, x_log_spacing=False):
with tf.name_scope('get_interp_idxs_weights_2d'):
if x_log_spacing:
x = tf.log(x)
xp = tf.log(xp)
with tf.control_dependencies([yp]):
xp = tf.tile(xp, yp.shape)
xyp = tf.expand_dims(tf.parallel_stack([xp, yp]), 1)
xy0 = tf.reshape(tf.parallel_stack([x[0], y[0]]), [2, 1, 1])
xy1 = tf.reshape(tf.parallel_stack([x[1], y[1]]), [2, 1, 1])
spacing = xy1 - xy0
ind_grid = (xyp - xy0) / spacing
ind = tf.cast(ind_grid, tf.int32) + [[[0], [1]]]
max_ind = [[[x.shape[0].value - 1]], [[y.shape[0].value - 1]]]
ind = tf.minimum(ind, max_ind)
ind_float = tf.cast(ind, tf.float64)
xy_grid = ind_float * spacing + xy0
weight = tf.abs(xyp - xy_grid) / spacing
if x_log_spacing:
weight = tf.parallel_stack([tf.exp(weight[0]), weight[1]])
weight = 1. - weight
weight_sum = tf.reduce_sum(weight, axis=1, keep_dims=True)
weight /= weight_sum
return ind, weight
示例14: _initialize_graph
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parallel_stack [as 別名]
def _initialize_graph(self, dtype=tf.float64):
self.tf_train_step = None
self.tf_component_parameters = None
self.tf_mean_log_likelihood = None
with self.tf_graph.as_default():
tf_component_log_probabilities = []
for component_id in range(len(self.components)):
worker_id = self.mapping[component_id]
with tf.device(self.workers[worker_id]):
self.components[component_id].initialize(dtype)
tf_component_log_probabilities.append(
self.components[component_id].get_log_probabilities(
self.tf_worker_data[worker_id]
)
)
tf_log_components = tf.parallel_stack(tf_component_log_probabilities)
tf_log_weighted = tf_log_components + tf.expand_dims(tf.log(self.tf_weights), 1)
tf_log_shift = tf.expand_dims(tf.reduce_max(tf_log_weighted, 0), 0)
tf_exp_log_shifted = tf.exp(tf_log_weighted - tf_log_shift)
tf_exp_log_shifted_sum = tf.reduce_sum(tf_exp_log_shifted, 0)
tf_log_likelihood = tf.reduce_sum(tf.log(tf_exp_log_shifted_sum)) + tf.reduce_sum(tf_log_shift)
self.tf_mean_log_likelihood = tf_log_likelihood / (self.tf_num_points * self.tf_dims)
tf_gamma = tf_exp_log_shifted / tf_exp_log_shifted_sum
tf_gamma_sum = tf.reduce_sum(tf_gamma, 1)
tf_gamma_weighted = tf_gamma / tf.expand_dims(tf_gamma_sum, 1)
tf_gamma_sum_split = tf.unstack(tf_gamma_sum)
tf_gamma_weighted_split = tf.unstack(tf_gamma_weighted)
tf_component_updaters = []
for component_id in range(len(self.components)):
worker_id = self.mapping[component_id]
with tf.device(self.workers[worker_id]):
tf_component_updaters.extend(
self.components[component_id].get_parameter_updaters(
self.tf_worker_data[worker_id],
tf_gamma_weighted_split[component_id],
tf_gamma_sum_split[component_id]
)
)
tf_new_weights = tf_gamma_sum / self.tf_num_points
tf_weights_updater = self.tf_weights.assign(tf_new_weights)
tf_all_updaters = tf_component_updaters + [tf_weights_updater]
self.tf_train_step = tf.group(*tf_all_updaters)
self.tf_component_parameters = [
comp.get_parameters() for comp in self.components
]
示例15: parallel_stack
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import parallel_stack [as 別名]
def parallel_stack(values, name="parallel_stack"):
"""Stacks a list of rank-`R` tensors into one rank-`(R+1)` tensor in parallel.
Requires that the shape of inputs be known at graph construction time.
Packs the list of tensors in `values` into a tensor with rank one higher than
each tensor in `values`, by packing them along the first dimension.
Given a list of length `N` of tensors of shape `(A, B, C)`; the `output`
tensor will have the shape `(N, A, B, C)`.
For example:
```prettyprint
# 'x' is [1, 4]
# 'y' is [2, 5]
# 'z' is [3, 6]
parallel_stack([x, y, z]) => [[1, 4], [2, 5], [3, 6]]
```
The difference between stack and parallel_stack is that stack requires all
of the inputs be computed before the operation will begin but doesn't require
that the input shapes be known during graph construction. Parallel stack
will copy pieces of the input into the output as they become available, in
some situations this can provide a performance benefit.
This is the opposite of unstack. The numpy equivalent is
tf.parallel_stack([x, y, z]) = np.asarray([x, y, z])
Args:
values: A list of `Tensor` objects with the same shape and type.
name: A name for this operation (optional).
Returns:
output: A stacked `Tensor` with the same type as `values`.
"""
with ops.name_scope(name):
value_t = ops.convert_to_tensor(values[0])
value_shape = ops.convert_to_tensor(value_t).get_shape()
output_shape = tensor_shape.TensorShape([len(values)])
output_shape = output_shape.concatenate(value_shape)
# expand_dims converts concat to stack.
return gen_array_ops._parallel_concat(
[expand_dims(value, 0) for value in values], shape=output_shape)