本文整理匯總了Python中tensorflow.pad方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.pad方法的具體用法?Python tensorflow.pad怎麽用?Python tensorflow.pad使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.pad方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: forward
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pad [as 別名]
def forward(self):
pad = [[self.lay.pad, self.lay.pad]] * 2;
temp = tf.pad(self.inp.out, [[0, 0]] + pad + [[0, 0]])
k = self.lay.w['kernels']
ksz = self.lay.ksize
half = int(ksz / 2)
out = list()
for i in range(self.lay.h_out):
row_i = list()
for j in range(self.lay.w_out):
kij = k[i * self.lay.w_out + j]
i_, j_ = i + 1 - half, j + 1 - half
tij = temp[:, i_ : i_ + ksz, j_ : j_ + ksz,:]
row_i.append(
tf.nn.conv2d(tij, kij,
padding = 'VALID',
strides = [1] * 4))
out += [tf.concat(row_i, 2)]
self.out = tf.concat(out, 1)
示例2: _mapper
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pad [as 別名]
def _mapper(example_proto):
features = {
'samples': tf.FixedLenSequenceFeature([1], tf.float32, allow_missing=True),
'label': tf.FixedLenSequenceFeature([], tf.string, allow_missing=True)
}
example = tf.parse_single_example(example_proto, features)
wav = example['samples'][:, 0]
wav = wav[:16384]
wav_len = tf.shape(wav)[0]
wav = tf.pad(wav, [[0, 16384 - wav_len]])
label = tf.reduce_join(example['label'], 0)
return wav, label
示例3: structure
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pad [as 別名]
def structure(self, input_tensor):
"""
Args:
input_tensor: NHWC
"""
rnd = tf.random_uniform((), 135, 160, dtype=tf.int32)
rescaled = tf.image.resize_images(
input_tensor, [rnd, rnd], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
h_rem = 160 - rnd
w_rem = 160 - rnd
pad_left = tf.random_uniform((), 0, w_rem, dtype=tf.int32)
pad_right = w_rem - pad_left
pad_top = tf.random_uniform((), 0, h_rem, dtype=tf.int32)
pad_bottom = h_rem - pad_top
padded = tf.pad(rescaled, [[0, 0], [pad_top, pad_bottom], [
pad_left, pad_right], [0, 0]])
padded.set_shape((input_tensor.shape[0], 160, 160, 3))
output = tf.cond(tf.random_uniform(shape=[1])[0] < tf.constant(0.9),
lambda: padded, lambda: input_tensor)
return output
示例4: pitch_shift
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pad [as 別名]
def pitch_shift(
spectrogram,
semitone_shift=0.0,
method=tf.image.ResizeMethod.BILINEAR):
""" Pitch shift a spectrogram preserving shape in tensorflow. Note that
this is an approximation in the frequency domain.
:param spectrogram: Input spectrogram to be pitch shifted as tensor.
:param semitone_shift: (Optional) Pitch shift in semitone, default to 0.0.
:param mehtod: (Optional) Interpolation method, default to BILINEAR.
:returns: Pitch shifted spectrogram (same shape as spectrogram).
"""
factor = 2 ** (semitone_shift / 12.)
T = tf.shape(spectrogram)[0]
F = tf.shape(spectrogram)[1]
F_ps = tf.cast(tf.cast(F, tf.float32) * factor, tf.int32)[0]
ps_spec = tf.image.resize_images(
spectrogram,
[T, F_ps],
method=method,
align_corners=True)
paddings = [[0, 0], [0, tf.maximum(0, F - F_ps)], [0, 0]]
return tf.pad(ps_spec[:, :F, :], paddings, 'CONSTANT')
示例5: _conv
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pad [as 別名]
def _conv(self, x, kernel_size, filters, strides, is_atrous=False):
"""Convolution."""
padding = 'SAME'
if not is_atrous and strides > 1:
pad = kernel_size - 1
pad_beg = pad // 2
pad_end = pad - pad_beg
if self._data_format == 'channels_first':
x = tf.pad(x, [[0, 0], [0, 0], [pad_beg, pad_end], [pad_beg, pad_end]])
else:
x = tf.pad(x, [[0, 0], [pad_beg, pad_end], [pad_beg, pad_end], [0, 0]])
padding = 'VALID'
return tf.layers.conv2d(
inputs=x,
kernel_size=kernel_size,
filters=filters,
strides=strides,
padding=padding,
use_bias=False,
data_format=self._data_format)
示例6: _PadLabels2d
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pad [as 別名]
def _PadLabels2d(logits_size, labels):
"""Pads or slices the 2nd dimension of 2-d labels to match logits_size.
Covers the case of 1-d softmax output, when labels is [batch, seq] and
logits is [batch, seq, onehot]
Args:
logits_size: Tensor returned from tf.shape giving the target size.
labels: 2-d, but not necessarily matching in size.
Returns:
labels: Resized by padding or clipping the last dimension to logits_size.
"""
pad = logits_size - tf.shape(labels)[1]
def _PadFn():
return tf.pad(labels, [[0, 0], [0, pad]])
def _SliceFn():
return tf.slice(labels, [0, 0], [-1, logits_size])
return tf.cond(tf.greater(pad, 0), _PadFn, _SliceFn)
示例7: _padded_batched_proposals_indicator
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pad [as 別名]
def _padded_batched_proposals_indicator(self,
num_proposals,
max_num_proposals):
"""Creates indicator matrix of non-pad elements of padded batch proposals.
Args:
num_proposals: Tensor of type tf.int32 with shape [batch_size].
max_num_proposals: Maximum number of proposals per image (integer).
Returns:
A Tensor of type tf.bool with shape [batch_size, max_num_proposals].
"""
batch_size = tf.size(num_proposals)
tiled_num_proposals = tf.tile(
tf.expand_dims(num_proposals, 1), [1, max_num_proposals])
tiled_proposal_index = tf.tile(
tf.expand_dims(tf.range(max_num_proposals), 0), [batch_size, 1])
return tf.greater(tiled_num_proposals, tiled_proposal_index)
示例8: basic_block
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pad [as 別名]
def basic_block(input, in_features, out_features, stride, is_training, keep_prob):
if stride == 1:
shortcut = input
else:
shortcut = tf.nn.avg_pool(input, [ 1, stride, stride, 1 ], [1, stride, stride, 1 ], 'VALID')
shortcut = tf.pad(shortcut, [[0, 0], [0, 0], [0, 0],
[(out_features-in_features)//2, (out_features-in_features)//2]])
current = conv2d(input, in_features, out_features, 3, stride)
current = tf.nn.dropout(current, keep_prob)
current = tf.contrib.layers.batch_norm(current, scale=True, is_training=is_training, updates_collections=None)
current = tf.nn.relu(current)
current = conv2d(current, out_features, out_features, 3, 1)
current = tf.nn.dropout(current, keep_prob)
current = tf.contrib.layers.batch_norm(current, scale=True, is_training=is_training, updates_collections=None)
# No final relu as per http://torch.ch/blog/2016/02/04/resnets.html
return current + shortcut
示例9: shake_shake_skip_connection
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pad [as 別名]
def shake_shake_skip_connection(x, output_filters, stride, is_training):
"""Adds a residual connection to the filter x for the shake-shake model."""
curr_filters = common_layers.shape_list(x)[-1]
if curr_filters == output_filters:
return x
stride_spec = [1, stride, stride, 1]
# Skip path 1.
path1 = tf.nn.avg_pool(x, [1, 1, 1, 1], stride_spec, "VALID")
path1 = tf.layers.conv2d(
path1, int(output_filters / 2), (1, 1), padding="SAME", name="path1_conv")
# Skip path 2.
pad_arr = [[0, 0], [0, 1], [0, 1], [0, 0]] # First pad with 0's then crop.
path2 = tf.pad(x, pad_arr)[:, 1:, 1:, :]
path2 = tf.nn.avg_pool(path2, [1, 1, 1, 1], stride_spec, "VALID")
path2 = tf.layers.conv2d(
path2, int(output_filters / 2), (1, 1), padding="SAME", name="path2_conv")
# Concat and apply BN.
final_path = tf.concat(values=[path1, path2], axis=-1)
final_path = tf.layers.batch_normalization(
final_path, training=is_training, name="final_path_bn")
return final_path
示例10: bytenet_internal
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pad [as 別名]
def bytenet_internal(inputs, targets, hparams):
"""ByteNet, main step used for training."""
with tf.variable_scope("bytenet"):
# Flatten inputs and extend length by 50%.
inputs = tf.expand_dims(common_layers.flatten4d3d(inputs), axis=2)
extend_length = tf.to_int32(0.5 * tf.to_float(tf.shape(inputs)[1]))
inputs_shape = inputs.shape.as_list()
inputs = tf.pad(inputs, [[0, 0], [0, extend_length], [0, 0], [0, 0]])
inputs_shape[1] = None
inputs.set_shape(inputs_shape) # Don't lose the other shapes when padding.
# Pad inputs and targets to be the same length, divisible by 50.
inputs, targets = common_layers.pad_to_same_length(
inputs, targets, final_length_divisible_by=50)
final_encoder = residual_dilated_conv(inputs, hparams.num_block_repeat,
"SAME", "encoder", hparams)
shifted_targets = common_layers.shift_right(targets)
kernel = (hparams.kernel_height, hparams.kernel_width)
decoder_start = common_layers.conv_block(
tf.concat([final_encoder, shifted_targets], axis=3),
hparams.hidden_size, [((1, 1), kernel)],
padding="LEFT")
return residual_dilated_conv(decoder_start, hparams.num_block_repeat,
"LEFT", "decoder", hparams)
示例11: pool
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pad [as 別名]
def pool(inputs, window_size, pooling_type, padding, strides=(1, 1)):
"""Pooling (supports "LEFT")."""
with tf.name_scope("pool", values=[inputs]):
static_shape = inputs.get_shape()
if not static_shape or len(static_shape) != 4:
raise ValueError("Inputs to conv must have statically known rank 4.")
# Add support for left padding.
if padding == "LEFT":
assert window_size[0] % 2 == 1 and window_size[1] % 2 == 1
if len(static_shape) == 3:
width_padding = 2 * (window_size[1] // 2)
padding_ = [[0, 0], [width_padding, 0], [0, 0]]
else:
height_padding = 2 * (window_size[0] // 2)
cond_padding = tf.cond(
tf.equal(shape_list(inputs)[2], 1), lambda: tf.constant(0),
lambda: tf.constant(2 * (window_size[1] // 2)))
width_padding = 0 if static_shape[2] == 1 else cond_padding
padding_ = [[0, 0], [height_padding, 0], [width_padding, 0], [0, 0]]
inputs = tf.pad(inputs, padding_)
inputs.set_shape([static_shape[0], None, None, static_shape[3]])
padding = "VALID"
return tf.nn.pool(inputs, window_size, pooling_type, padding, strides=strides)
示例12: add_positional_embedding
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pad [as 別名]
def add_positional_embedding(x, max_length, name, positions=None):
"""Add positional embedding.
Args:
x: a Tensor with shape [batch, length, depth]
max_length: an integer. static maximum size of any dimension.
name: a name for this layer.
positions: an optional tensor with shape [batch, length]
Returns:
a Tensor the same shape as x.
"""
_, length, depth = common_layers.shape_list(x)
var = tf.cast(tf.get_variable(name, [max_length, depth]), x.dtype)
if positions is None:
sliced = tf.cond(
tf.less(length, max_length),
lambda: tf.slice(var, [0, 0], [length, -1]),
lambda: tf.pad(var, [[0, length - max_length], [0, 0]]))
return x + tf.expand_dims(sliced, 0)
else:
return x + tf.gather(var, tf.to_int32(positions))
示例13: _relative_position_to_absolute_position_masked
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pad [as 別名]
def _relative_position_to_absolute_position_masked(x):
"""Helper to dot_product_self_attention_relative_v2.
Rearrange an attention logits or weights Tensor.
The dimensions of the input represent:
[batch, heads, query_position, memory_position - query_position + length - 1]
The dimensions of the output represent:
[batch, heads, query_position, memory_position]
Only works with masked_attention. Undefined behavior for regions of the
input where memory_position > query_position.
Args:
x: a Tensor with shape [batch, heads, length, length]
Returns:
a Tensor with shape [batch, heads, length, length]
"""
batch, heads, length, _ = common_layers.shape_list(x)
x = tf.pad(x, [[0, 0], [0, 0], [0, 0], [1, 0]])
x = tf.reshape(x, [batch, heads, 1 + length, length])
x = tf.slice(x, [0, 0, 1, 0], [-1, -1, -1, -1])
return x
示例14: _absolute_position_to_relative_position_masked
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pad [as 別名]
def _absolute_position_to_relative_position_masked(x):
"""Helper to dot_product_self_attention_relative_v2.
Rearrange an attention logits or weights Tensor.
The dimensions of the input represent:
[batch, heads, query_position, memory_position]
The dimensions of the output represent:
[batch, heads, query_position, memory_position - query_position + length - 1]
Only works with masked_attention. Undefined behavior for regions of the
input where memory_position > query_position.
Args:
x: a Tensor with shape [batch, heads, length, length]
Returns:
a Tensor with shape [batch, heads, length, length]
"""
batch, heads, length, _ = common_layers.shape_list(x)
x = tf.pad(x, [[0, 0], [0, 0], [1, 0], [0, 0]])
x = tf.reshape(x, [batch, heads, length, length + 1])
x = tf.slice(x, [0, 0, 0, 1], [batch, heads, length, length])
return x
示例15: get_shifted_center_blocks
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pad [as 別名]
def get_shifted_center_blocks(x, indices):
"""Get right shifted blocks for masked local attention 2d.
Args:
x: A tensor with shape [batch, heads, height, width, depth]
indices: The indices to gather blocks
Returns:
x_shifted: a tensor of extracted blocks, each block right shifted along
length.
"""
center_x = gather_blocks_2d(x, indices)
# Shift right along the length dimension
def shift_right_2d_blocks(x):
"""Shift the second to last dimension of x right by one."""
shifted_targets = (
tf.pad(x, [[0, 0], [0, 0], [0, 0], [1, 0], [0, 0]])[:, :, :, :-1, :])
return shifted_targets
x_shifted = shift_right_2d_blocks(center_x)
return x_shifted