當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.pack方法代碼示例

本文整理匯總了Python中tensorflow.pack方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.pack方法的具體用法?Python tensorflow.pack怎麽用?Python tensorflow.pack使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.pack方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: lp_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pack [as 別名]
def lp_loss(gen_frames, gt_frames, l_num):
    """
    Calculates the sum of lp losses between the predicted and ground truth frames.

    @param gen_frames: The predicted frames at each scale.
    @param gt_frames: The ground truth frames at each scale
    @param l_num: 1 or 2 for l1 and l2 loss, respectively).

    @return: The lp loss.
    """
    # calculate the loss for each scale
    scale_losses = []
    for i in xrange(len(gen_frames)):
        scale_losses.append(tf.reduce_sum(tf.abs(gen_frames[i] - gt_frames[i])**l_num))

    # condense into one tensor and avg
    return tf.reduce_mean(tf.pack(scale_losses)) 
開發者ID:dyelax,項目名稱:Adversarial_Video_Generation,代碼行數:19,代碼來源:loss_functions.py

示例2: adv_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pack [as 別名]
def adv_loss(preds, labels):
    """
    Calculates the sum of BCE losses between the predicted classifications and true labels.

    @param preds: The predicted classifications at each scale.
    @param labels: The true labels. (Same for every scale).

    @return: The adversarial loss.
    """
    # calculate the loss for each scale
    scale_losses = []
    for i in xrange(len(preds)):
        loss = bce_loss(preds[i], labels)
        scale_losses.append(loss)

    # condense into one tensor and avg
    return tf.reduce_mean(tf.pack(scale_losses)) 
開發者ID:dyelax,項目名稱:Adversarial_Video_Generation,代碼行數:19,代碼來源:loss_functions.py

示例3: __call__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pack [as 別名]
def __call__(self, input_layer, output_shape,
                 k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02,
                 name="deconv2d"):
        output_shape[0] = input_layer.shape[0]
        ts_output_shape = tf.pack(output_shape)
        with tf.variable_scope(name):
            # filter : [height, width, output_channels, in_channels]
            w = self.variable('w', [k_h, k_w, output_shape[-1], input_layer.shape[-1]],
                              init=tf.random_normal_initializer(stddev=stddev))

            try:
                deconv = tf.nn.conv2d_transpose(input_layer, w,
                                                output_shape=ts_output_shape,
                                                strides=[1, d_h, d_w, 1])

            # Support for versions of TensorFlow before 0.7.0
            except AttributeError:
                deconv = tf.nn.deconv2d(input_layer, w, output_shape=ts_output_shape,
                                        strides=[1, d_h, d_w, 1])

            # biases = self.variable('biases', [output_shape[-1]], init=tf.constant_initializer(0.0))
            # deconv = tf.reshape(tf.nn.bias_add(deconv, biases), [-1] + output_shape[1:])
            deconv = tf.reshape(deconv, [-1] + output_shape[1:])

            return deconv 
開發者ID:hanzhanggit,項目名稱:StackGAN,代碼行數:27,代碼來源:custom_ops.py

示例4: loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pack [as 別名]
def loss(self, img_batch, label_batch):
        """Create the network, run inference on the input batch and compute loss.
        
        Args:
          input_batch: batch of pre-processed images.
          
        Returns:
          Pixel-wise softmax loss.
        """
        raw_output = self._create_network(tf.cast(img_batch, tf.float32), keep_prob=tf.constant(0.5))
        prediction = tf.reshape(raw_output, [-1, n_classes])
        
        # Need to resize labels and convert using one-hot encoding.
        label_batch = self.prepare_label(label_batch, tf.pack(raw_output.get_shape()[1:3]))
        gt = tf.reshape(label_batch, [-1, n_classes])
        
        # Pixel-wise softmax loss.
        loss = tf.nn.softmax_cross_entropy_with_logits(prediction, gt)
        reduced_loss = tf.reduce_mean(loss)
        
        return reduced_loss 
開發者ID:DrSleep,項目名稱:tensorflow-deeplab-lfov,代碼行數:23,代碼來源:model.py

示例5: one_hot_encoding

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pack [as 別名]
def one_hot_encoding(labels, num_classes, scope=None):
  """Transform numeric labels into onehot_labels.

  Args:
    labels: [batch_size] target labels.
    num_classes: total number of classes.
    scope: Optional scope for op_scope.
  Returns:
    one hot encoding of the labels.
  """
  with tf.op_scope([labels], scope, 'OneHotEncoding'):
    batch_size = labels.get_shape()[0]
    indices = tf.expand_dims(tf.range(0, batch_size), 1)
    labels = tf.cast(tf.expand_dims(labels, 1), indices.dtype)
    concated = tf.concat(1, [indices, labels])
    onehot_labels = tf.sparse_to_dense(
        concated, tf.pack([batch_size, num_classes]), 1.0, 0.0)
    onehot_labels.set_shape([batch_size, num_classes])
    return onehot_labels 
開發者ID:Cyber-Neuron,項目名稱:inception_v3,代碼行數:21,代碼來源:ops.py

示例6: process_image

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pack [as 別名]
def process_image(img, scale, isotropic, crop, mean):
    '''Crops, scales, and normalizes the given image.
    scale : The image wil be first scaled to this size.
            If isotropic is true, the smaller side is rescaled to this,
            preserving the aspect ratio.
    crop  : After scaling, a central crop of this size is taken.
    mean  : Subtracted from the image
    '''
    # Rescale
    if isotropic:
        img_shape = tf.to_float(tf.shape(img)[:2])
        min_length = tf.minimum(img_shape[0], img_shape[1])
        new_shape = tf.to_int32((scale / min_length) * img_shape)
    else:
        new_shape = tf.pack([scale, scale])
    img = tf.image.resize_images(img, new_shape[0], new_shape[1])
    # Center crop
    # Use the slice workaround until crop_to_bounding_box supports deferred tensor shapes
    # See: https://github.com/tensorflow/tensorflow/issues/521
    offset = (new_shape - crop) / 2
    img = tf.slice(img, begin=tf.pack([offset[0], offset[1], 0]), size=tf.pack([crop, crop, -1]))
    # Mean subtraction
    return tf.to_float(img) - mean 
開發者ID:Vladkryvoruchko,項目名稱:PSPNet-Keras-tensorflow,代碼行數:25,代碼來源:dataset.py

示例7: one_hot_encoding

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pack [as 別名]
def one_hot_encoding(labels, num_classes, scope=None):
  """Transform numeric labels into onehot_labels.

  Args:
    labels: [batch_size] target labels.
    num_classes: total number of classes.
    scope: Optional scope for name_scope.
  Returns:
    one hot encoding of the labels.
  """
  with tf.name_scope(scope, 'OneHotEncoding', [labels]):
    batch_size = labels.get_shape()[0]
    indices = tf.expand_dims(tf.range(0, batch_size), 1)
    labels = tf.cast(tf.expand_dims(labels, 1), indices.dtype)
    concated = tf.concat([indices, labels], 1)
    onehot_labels = tf.sparse_to_dense(
        concated, tf.pack([batch_size, num_classes]), 1.0, 0.0)
    onehot_labels.set_shape([batch_size, num_classes])
    return onehot_labels 
開發者ID:MinfengZhu,項目名稱:DM-GAN,代碼行數:21,代碼來源:ops.py

示例8: tf_ms_ssim

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pack [as 別名]
def tf_ms_ssim(img1, img2, mean_metric=True, level=5):
    weight = tf.constant([0.0448, 0.2856, 0.3001, 0.2363, 0.1333], dtype=tf.float32)
    mssim = []
    mcs = []
    for l in range(level):
        ssim_map, cs_map = tf_ssim(img1, img2, cs_map=True, mean_metric=False)
        mssim.append(tf.reduce_mean(ssim_map))
        mcs.append(tf.reduce_mean(cs_map))
        filtered_im1 = tf.nn.avg_pool(img1, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
        filtered_im2 = tf.nn.avg_pool(img2, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
        img1 = filtered_im1
        img2 = filtered_im2

    # list to tensor of dim D+1
    mssim = tf.pack(mssim, axis=0)
    mcs = tf.pack(mcs, axis=0)

    value = (tf.reduce_prod(
        mcs[0:level-1]**weight[0:level-1]) * (mssim[level-1]**weight[level-1]))

    if mean_metric:
        value = tf.reduce_mean(value)
    return value 
開發者ID:shaohua0116,項目名稱:Multiview2Novelview,代碼行數:25,代碼來源:ssim.py

示例9: build_skip_conn_attn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pack [as 別名]
def build_skip_conn_attn(cnn_channels, h_cnn_time, x_time, timespan):
  """Build skip connection for attention based model."""
  skip = [None]
  skip_ch = [0]
  nlayers = len(h_cnn_time[0])
  timespan = len(h_cnn_time)
  for jj in range(nlayers):
    lidx = nlayers - jj - 2
    if lidx >= 0:
      ll = [h_cnn_time[tt][lidx] for tt in range(timespan)]
    else:
      ll = x_time
    layer = tf.concat(1, [tf.expand_dims(l, 1) for l in ll])
    ss = tf.shape(layer)
    layer = tf.reshape(layer, tf.pack([-1, ss[2], ss[3], ss[4]]))
    skip.append(layer)
    ch_idx = lidx + 1
    skip_ch.append(cnn_channels[ch_idx])
  return skip, skip_ch 
開發者ID:renmengye,項目名稱:rec-attend-public,代碼行數:21,代碼來源:modellib.py

示例10: _build_global_context

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pack [as 別名]
def _build_global_context(
        net,
        is_training=False,
        bayesian=False,
        dropout_keep_prob=0.8):

    with tf.variable_scope('GlobalContext'):
        # Reduce feature dimension before LSTM to reduce param count
        net = slim.conv2d(net, 1024, 1, padding='VALID', scope='conv_reduce_1x1')

        #net = slim.dropout(net, dropout_keep_prob, is_training=bayesian or is_training, scope='Dropout')

        rows = tf.unpack(net, axis=1)
        net = tf.pack(
            [lstm.bidir_lstm(r, 512, scope='row%d' % i) for i, r in enumerate(rows)],
            axis=1)
        print('Horizontal LSTM', net.get_shape())

        cols = tf.unpack(net, axis=2)
        net = tf.pack(
            [lstm.bidir_lstm(r, 512, scope='col%d' % i) for i, r in enumerate(cols)],
            axis=2)
        print('Vertical LSTM', net.get_shape())

    return net 
開發者ID:rwightman,項目名稱:tensorflow-litterbox,代碼行數:27,代碼來源:build_resnet_sdc.py

示例11: _merge_outputs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pack [as 別名]
def _merge_outputs(outputs, weights):
    assert outputs

    merged = defaultdict(list)
    weights_tensor = tf.pack(weights)
    print('weights ', weights_tensor.get_shape())

    # recombine multiple model outputs by dict key or list position under output name based dict
    if isinstance(outputs[0], dict):
        for o in outputs:
            for name, tensor in o.items():
                merged['output_%s' % name].append(tensor)
    elif isinstance(outputs[0], list):
        for o in outputs:
            for index, tensor in enumerate(o):
                merged['output_%d' % index].append(tensor)
    else:
        merged['output'] = outputs

    reduced = {name: _weighted_mean(value_list, weights_tensor) for name, value_list in merged.items()}
    for k, v in reduced.items():
        print(k, v, v.get_shape())

    return reduced 
開發者ID:rwightman,項目名稱:tensorflow-litterbox,代碼行數:26,代碼來源:sdc_export_graph.py

示例12: testGradientsAxis1

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pack [as 別名]
def testGradientsAxis1(self):
    np.random.seed(7)
    for shape in (2, 3), (3, 2), (4, 3, 2):
      data = np.random.randn(*shape)
      shapes = [shape[1:]] * shape[0]
      out_shape = list(shape[1:])
      out_shape.insert(1, shape[0])
      with self.test_session(use_gpu=True):
        # TODO(irving): Remove list() once we handle maps correctly
        xs = list(map(tf.constant, data))
        c = tf.pack(xs, axis=1)
        err = tf.test.compute_gradient_error(xs, shapes, c, out_shape)
        self.assertLess(err, 1e-6)

        c = tf.stack(xs, axis=1)
        err = tf.test.compute_gradient_error(xs, shapes, c, out_shape)
        self.assertLess(err, 1e-6) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:19,代碼來源:pack_op_test.py

示例13: testAgainstNumpy

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pack [as 別名]
def testAgainstNumpy(self):
    # For 1 to 5 dimensions.
    for i in range(1, 6):
      expected = np.random.random(np.random.permutation(i) + 1)

      # For all the possible axis to split it, including negative indices.
      for j in range(-i, i):
        test_arrays = np_split_squeeze(expected, j)

        with self.test_session(use_gpu=True):
          actual_pack = tf.pack(test_arrays, axis=j)
          self.assertEqual(expected.shape, actual_pack.get_shape())
          actual_pack = actual_pack.eval()

          actual_stack = tf.pack(test_arrays, axis=j)
          self.assertEqual(expected.shape, actual_stack.get_shape())
          actual_stack = actual_stack.eval()

        self.assertNDArrayNear(expected, actual_pack, 1e-6)
        self.assertNDArrayNear(expected, actual_stack, 1e-6) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:22,代碼來源:pack_op_test.py

示例14: test_5th_order_polynomial

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pack [as 別名]
def test_5th_order_polynomial(self):
    # this should be an exact fit
    f = lambda x: x ** 4 + x ** 3 - 2 * x ** 2 + 4 * x + 5
    f_prime = lambda x: 4 * x ** 3 + 3 * x ** 2 - 4 * x + 4
    coeffs = odes._interp_fit(
        f(0.0), f(10.0), f(5.0), f_prime(0.0), f_prime(10.0), 10.0)
    times = np.linspace(0, 10, dtype=np.float32)
    y_fit = tf.pack([odes._interp_evaluate(coeffs, 0.0, 10.0, t)
                     for t in times])
    y_expected = f(times)
    with self.test_session() as sess:
      y_actual = sess.run(y_fit)
      self.assertAllClose(y_expected, y_actual)

    # attempt interpolation outside bounds
    y_invalid = odes._interp_evaluate(coeffs, 0.0, 10.0, 100.0)
    with self.test_session() as sess:
      with self.assertRaises(tf.errors.InvalidArgumentError):
        sess.run(y_invalid) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:21,代碼來源:odes_test.py

示例15: deconv2d

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import pack [as 別名]
def deconv2d(x, out_shape, name, filter_size=(3, 3), stride=(1, 1), pad="SAME", dtype=tf.float32, collections=None, prevNumFeat=None):
    with tf.variable_scope(name):
        num_filters = out_shape[-1]
        prevNumFeat = int(x.get_shape()[3]) if prevNumFeat is None else prevNumFeat
        stride_shape = [1, stride[0], stride[1], 1]
        # transpose_filter : [height, width, out_channels, in_channels]
        filter_shape = [filter_size[0], filter_size[1], num_filters, prevNumFeat]

        # there are "num input feature maps * filter height * filter width"
        # inputs to each hidden unit
        fan_in = np.prod(filter_shape[:2]) * prevNumFeat
        # each unit in the lower layer receives a gradient from:
        # "num output feature maps * filter height * filter width"
        fan_out = np.prod(filter_shape[:3])
        # initialize weights with random weights
        w_bound = np.sqrt(6. / (fan_in + fan_out))

        w = tf.get_variable("W", filter_shape, dtype, tf.random_uniform_initializer(-w_bound, w_bound),
                            collections=collections)
        b = tf.get_variable("b", [num_filters], initializer=tf.constant_initializer(0.0),
                            collections=collections)
        deconv2d = tf.nn.conv2d_transpose(x, w, tf.pack(out_shape), stride_shape, pad)
        # deconv2d = tf.reshape(tf.nn.bias_add(deconv2d, b), deconv2d.get_shape())
        return deconv2d 
開發者ID:flyyufelix,項目名稱:sonic_contest,代碼行數:26,代碼來源:model.py


注:本文中的tensorflow.pack方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。