當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.op_scope方法代碼示例

本文整理匯總了Python中tensorflow.op_scope方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.op_scope方法的具體用法?Python tensorflow.op_scope怎麽用?Python tensorflow.op_scope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.op_scope方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: soften_labels

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import op_scope [as 別名]
def soften_labels(bool_labels, softness=0.05, scope='soften_labels'):
  """Converts boolean labels into float32.

  Args:
    bool_labels: Tensor with dtype `boolean`
    softness: The float value to use for False.  1 - softness is implicitly used
              for True
    scope: passed to op_scope

  Returns:
    Tensor with same shape as bool_labels with dtype `float32` and values 0.05
    for False and 0.95 for True.
  """
  with tf.op_scope([bool_labels, softness], scope):
    label_shape = tf.shape(bool_labels, name='label_shape')
    return tf.where(bool_labels,
                    tf.fill(label_shape, 1.0 - softness, name='soft_true'),
                    tf.fill(label_shape, softness, name='soft_false')) 
開發者ID:google,項目名稱:ffn,代碼行數:20,代碼來源:inputs.py

示例2: decode_jpeg

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import op_scope [as 別名]
def decode_jpeg(image_buffer, scope=None):  # , dtype=tf.float32):
    """Decode a JPEG string into one 3-D float image Tensor.
  
    Args:
      image_buffer: scalar string Tensor.
      scope: Optional scope for op_scope.
    Returns:
      3-D float Tensor with values ranging from [0, 1).
    """
    # with tf.op_scope([image_buffer], scope, 'decode_jpeg'):
    # with tf.name_scope(scope, 'decode_jpeg', [image_buffer]):
    with tf.compat.v1.name_scope(scope or 'decode_jpeg'):
        # Decode the string as an RGB JPEG.
        # Note that the resulting image contains an unknown height and width
        # that is set dynamically by decode_jpeg. In other words, the height
        # and width of image is unknown at compile-time.
        image = tf.image.decode_jpeg(image_buffer, channels=3)  # ,
        #     fancy_upscaling=False,
        #     dct_method='INTEGER_FAST')

        # image = tf.Print(image, [tf.shape(image)], 'Image shape: ')
        image = tf.image.convert_image_dtype(image, dtype=tf.float32)

        return image 
開發者ID:IntelAI,項目名稱:models,代碼行數:26,代碼來源:preprocessing.py

示例3: decode_jpeg

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import op_scope [as 別名]
def decode_jpeg(image_buffer, scope=None):  # , dtype=tf.float32):
  """Decode a JPEG string into one 3-D float image Tensor.

  Args:
    image_buffer: scalar string Tensor.
    scope: Optional scope for op_scope.
  Returns:
    3-D float Tensor with values ranging from [0, 1).
  """
  # with tf.op_scope([image_buffer], scope, 'decode_jpeg'):
  # with tf.name_scope(scope, 'decode_jpeg', [image_buffer]):
  with tf.compat.v1.name_scope(scope or 'decode_jpeg'):
    # Decode the string as an RGB JPEG.
    # Note that the resulting image contains an unknown height and width
    # that is set dynamically by decode_jpeg. In other words, the height
    # and width of image is unknown at compile-time.
    image = tf.image.decode_jpeg(image_buffer, channels=3,
                                 fancy_upscaling=False,
                                 dct_method='INTEGER_FAST')

    # image = tf.Print(image, [tf.shape(image)], 'Image shape: ')

    return image 
開發者ID:IntelAI,項目名稱:models,代碼行數:25,代碼來源:preprocessing.py

示例4: decode_jpeg

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import op_scope [as 別名]
def decode_jpeg(image_buffer, scope=None):  # , dtype=tf.float32):
  """Decode a JPEG string into one 3-D float image Tensor.

  Args:
    image_buffer: scalar string Tensor.
    scope: Optional scope for op_scope.
  Returns:
    3-D float Tensor with values ranging from [0, 1).
  """
  # with tf.op_scope([image_buffer], scope, 'decode_jpeg'):
  # with tf.name_scope(scope, 'decode_jpeg', [image_buffer]):
  with tf.compat.v1.name_scope(scope or 'decode_jpeg'):
    # Decode the string as an RGB JPEG.
    # Note that the resulting image contains an unknown height and width
    # that is set dynamically by decode_jpeg. In other words, the height
    # and width of image is unknown at compile-time.
    image = tf.image.decode_jpeg(image_buffer, channels=3) #,
                            #     fancy_upscaling=False,
                            #     dct_method='INTEGER_FAST')

    # image = tf.Print(image, [tf.shape(image)], 'Image shape: ')
    image = tf.image.convert_image_dtype(image, dtype=tf.float32)

    return image 
開發者ID:IntelAI,項目名稱:models,代碼行數:26,代碼來源:preprocessing.py

示例5: l1_regularizer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import op_scope [as 別名]
def l1_regularizer(weight=1.0, scope=None):
  """Define a L1 regularizer.

  Args:
    weight: scale the loss by this factor.
    scope: Optional scope for op_scope.

  Returns:
    a regularizer function.
  """
  def regularizer(tensor):
    with tf.op_scope([tensor], scope, 'L1Regularizer'):
      l1_weight = tf.convert_to_tensor(weight,
                                       dtype=tensor.dtype.base_dtype,
                                       name='weight')
      return tf.mul(l1_weight, tf.reduce_sum(tf.abs(tensor)), name='value')
  return regularizer 
開發者ID:Cyber-Neuron,項目名稱:inception_v3,代碼行數:19,代碼來源:losses.py

示例6: l2_regularizer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import op_scope [as 別名]
def l2_regularizer(weight=1.0, scope=None):
  """Define a L2 regularizer.

  Args:
    weight: scale the loss by this factor.
    scope: Optional scope for op_scope.

  Returns:
    a regularizer function.
  """
  def regularizer(tensor):
    with tf.op_scope([tensor], scope, 'L2Regularizer'):
      l2_weight = tf.convert_to_tensor(weight,
                                       dtype=tensor.dtype.base_dtype,
                                       name='weight')
      return tf.mul(l2_weight, tf.nn.l2_loss(tensor), name='value')
  return regularizer 
開發者ID:Cyber-Neuron,項目名稱:inception_v3,代碼行數:19,代碼來源:losses.py

示例7: l1_l2_regularizer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import op_scope [as 別名]
def l1_l2_regularizer(weight_l1=1.0, weight_l2=1.0, scope=None):
  """Define a L1L2 regularizer.

  Args:
    weight_l1: scale the L1 loss by this factor.
    weight_l2: scale the L2 loss by this factor.
    scope: Optional scope for op_scope.

  Returns:
    a regularizer function.
  """
  def regularizer(tensor):
    with tf.op_scope([tensor], scope, 'L1L2Regularizer'):
      weight_l1_t = tf.convert_to_tensor(weight_l1,
                                         dtype=tensor.dtype.base_dtype,
                                         name='weight_l1')
      weight_l2_t = tf.convert_to_tensor(weight_l2,
                                         dtype=tensor.dtype.base_dtype,
                                         name='weight_l2')
      reg_l1 = tf.mul(weight_l1_t, tf.reduce_sum(tf.abs(tensor)),
                      name='value_l1')
      reg_l2 = tf.mul(weight_l2_t, tf.nn.l2_loss(tensor),
                      name='value_l2')
      return tf.add(reg_l1, reg_l2, name='value')
  return regularizer 
開發者ID:Cyber-Neuron,項目名稱:inception_v3,代碼行數:27,代碼來源:losses.py

示例8: l1_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import op_scope [as 別名]
def l1_loss(tensor, weight=1.0, scope=None):
  """Define a L1Loss, useful for regularize, i.e. lasso.

  Args:
    tensor: tensor to regularize.
    weight: scale the loss by this factor.
    scope: Optional scope for op_scope.

  Returns:
    the L1 loss op.
  """
  with tf.op_scope([tensor], scope, 'L1Loss'):
    weight = tf.convert_to_tensor(weight,
                                  dtype=tensor.dtype.base_dtype,
                                  name='loss_weight')
    loss = tf.mul(weight, tf.reduce_sum(tf.abs(tensor)), name='value')
    tf.add_to_collection(LOSSES_COLLECTION, loss)
    return loss 
開發者ID:Cyber-Neuron,項目名稱:inception_v3,代碼行數:20,代碼來源:losses.py

示例9: l2_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import op_scope [as 別名]
def l2_loss(tensor, weight=1.0, scope=None):
  """Define a L2Loss, useful for regularize, i.e. weight decay.

  Args:
    tensor: tensor to regularize.
    weight: an optional weight to modulate the loss.
    scope: Optional scope for op_scope.

  Returns:
    the L2 loss op.
  """
  with tf.op_scope([tensor], scope, 'L2Loss'):
    weight = tf.convert_to_tensor(weight,
                                  dtype=tensor.dtype.base_dtype,
                                  name='loss_weight')
    loss = tf.mul(weight, tf.nn.l2_loss(tensor), name='value')
    tf.add_to_collection(LOSSES_COLLECTION, loss)
    return loss 
開發者ID:Cyber-Neuron,項目名稱:inception_v3,代碼行數:20,代碼來源:losses.py

示例10: one_hot_encoding

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import op_scope [as 別名]
def one_hot_encoding(labels, num_classes, scope=None):
  """Transform numeric labels into onehot_labels.

  Args:
    labels: [batch_size] target labels.
    num_classes: total number of classes.
    scope: Optional scope for op_scope.
  Returns:
    one hot encoding of the labels.
  """
  with tf.op_scope([labels], scope, 'OneHotEncoding'):
    batch_size = labels.get_shape()[0]
    indices = tf.expand_dims(tf.range(0, batch_size), 1)
    labels = tf.cast(tf.expand_dims(labels, 1), indices.dtype)
    concated = tf.concat(1, [indices, labels])
    onehot_labels = tf.sparse_to_dense(
        concated, tf.pack([batch_size, num_classes]), 1.0, 0.0)
    onehot_labels.set_shape([batch_size, num_classes])
    return onehot_labels 
開發者ID:Cyber-Neuron,項目名稱:inception_v3,代碼行數:21,代碼來源:ops.py

示例11: dropout

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import op_scope [as 別名]
def dropout(inputs, keep_prob=0.5, is_training=True, scope=None):
  """Returns a dropout layer applied to the input.

  Args:
    inputs: the tensor to pass to the Dropout layer.
    keep_prob: the probability of keeping each input unit.
    is_training: whether or not the model is in training mode. If so, dropout is
    applied and values scaled. Otherwise, inputs is returned.
    scope: Optional scope for op_scope.

  Returns:
    a tensor representing the output of the operation.
  """
  if is_training and keep_prob > 0:
    with tf.op_scope([inputs], scope, 'Dropout'):
      return tf.nn.dropout(inputs, keep_prob)
  else:
    return inputs 
開發者ID:Cyber-Neuron,項目名稱:inception_v3,代碼行數:20,代碼來源:ops.py

示例12: flatten

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import op_scope [as 別名]
def flatten(inputs, scope=None):
  """Flattens the input while maintaining the batch_size.

    Assumes that the first dimension represents the batch.

  Args:
    inputs: a tensor of size [batch_size, ...].
    scope: Optional scope for op_scope.

  Returns:
    a flattened tensor with shape [batch_size, k].
  Raises:
    ValueError: if inputs.shape is wrong.
  """
  if len(inputs.get_shape()) < 2:
    raise ValueError('Inputs must be have a least 2 dimensions')
  dims = inputs.get_shape()[1:]
  k = dims.num_elements()
  with tf.op_scope([inputs], scope, 'Flatten'):
    return tf.reshape(inputs, [-1, k]) 
開發者ID:Cyber-Neuron,項目名稱:inception_v3,代碼行數:22,代碼來源:ops.py

示例13: eval_image

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import op_scope [as 別名]
def eval_image(image, height, width, scope=None):
  """Prepare one image for evaluation.

  Args:
    image: 3-D float Tensor
    height: integer
    width: integer
    scope: Optional scope for op_scope.
  Returns:
    3-D float Tensor of prepared image.
  """
  with tf.op_scope([image, height, width], scope, 'eval_image'):
    # Crop the central region of the image with an area containing 87.5% of
    # the original image.
    image = tf.image.central_crop(image, central_fraction=0.875)

    # Resize the image to the original height and width.
    image = tf.expand_dims(image, 0)
    image = tf.image.resize_bilinear(image, [height, width],
                                     align_corners=False)
    image = tf.squeeze(image, [0])
    return image 
開發者ID:Cyber-Neuron,項目名稱:inception_v3,代碼行數:24,代碼來源:image_processing.py

示例14: decode_jpeg

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import op_scope [as 別名]
def decode_jpeg(image_buffer, scope=None):  # , dtype=tf.float32):
    """Decode a JPEG string into one 3-D float image Tensor.

  Args:
    image_buffer: scalar string Tensor.
    scope: Optional scope for op_scope.
  Returns:
    3-D float Tensor with values ranging from [0, 1).
  """
    # with tf.op_scope([image_buffer], scope, 'decode_jpeg'):
    # with tf.name_scope(scope, 'decode_jpeg', [image_buffer]):
    with tf.name_scope(scope or 'decode_jpeg'):
        # Decode the string as an RGB JPEG.
        # Note that the resulting image contains an unknown height and width
        # that is set dynamically by decode_jpeg. In other words, the height
        # and width of image is unknown at compile-time.
        image = tf.image.decode_jpeg(image_buffer, channels=3,
                                     fancy_upscaling=False,
                                     dct_method='INTEGER_FAST')

        # image = tf.Print(image, [tf.shape(image)], 'Image shape: ')

        return image 
開發者ID:snuspl,項目名稱:parallax,代碼行數:25,代碼來源:preprocessing.py

示例15: decode_jpeg

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import op_scope [as 別名]
def decode_jpeg(image_buffer, scope=None):  # , dtype=tf.float32):
  """Decode a JPEG string into one 3-D float image Tensor.

  Args:
    image_buffer: scalar string Tensor.
    scope: Optional scope for op_scope.
  Returns:
    3-D float Tensor with values ranging from [0, 1).
  """
  # with tf.op_scope([image_buffer], scope, 'decode_jpeg'):
  # with tf.name_scope(scope, 'decode_jpeg', [image_buffer]):
  with tf.name_scope(scope or 'decode_jpeg'):
    # Decode the string as an RGB JPEG.
    # Note that the resulting image contains an unknown height and width
    # that is set dynamically by decode_jpeg. In other words, the height
    # and width of image is unknown at compile-time.
    image = tf.image.decode_jpeg(image_buffer, channels=3,
                                 fancy_upscaling=False,
                                 dct_method='INTEGER_FAST')

    # image = tf.Print(image, [tf.shape(image)], 'Image shape: ')

    return image 
開發者ID:awslabs,項目名稱:deeplearning-benchmark,代碼行數:25,代碼來源:preprocessing.py


注:本文中的tensorflow.op_scope方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。