當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.ones_like方法代碼示例

本文整理匯總了Python中tensorflow.ones_like方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.ones_like方法的具體用法?Python tensorflow.ones_like怎麽用?Python tensorflow.ones_like使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.ones_like方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: call

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_like [as 別名]
def call(self, x):
        if (self.size == None) or (self.mode == 'sum'):
            self.size = int(x.shape[-1])

        position_j = 1. / \
            K.pow(10000., 2 * K.arange(self.size / 2, dtype='float32') / self.size)
        position_j = K.expand_dims(position_j, 0)

        position_i = tf.cumsum(K.ones_like(x[:, :, 0]), 1) - 1
        position_i = K.expand_dims(position_i, 2)
        position_ij = K.dot(position_i, position_j)
        outputs = K.concatenate(
            [K.cos(position_ij), K.sin(position_ij)], 2)

        if self.mode == 'sum':
            if self.scale:
                outputs = outputs * outputs ** 0.5
            return x + outputs
        elif self.mode == 'concat':
            return K.concatenate([outputs, x], 2) 
開發者ID:ShenDezhou,項目名稱:icme2019,代碼行數:22,代碼來源:sequence.py

示例2: build_inputs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_like [as 別名]
def build_inputs(self):
    if self.mode == "encode":
      # Encode mode doesn't read from disk, so defer to parent.
      return super(SkipThoughtsModel, self).build_inputs()
    else:
      # Replace disk I/O with random Tensors.
      self.encode_ids = tf.random_uniform(
          [self.config.batch_size, 15],
          minval=0,
          maxval=self.config.vocab_size,
          dtype=tf.int64)
      self.decode_pre_ids = tf.random_uniform(
          [self.config.batch_size, 15],
          minval=0,
          maxval=self.config.vocab_size,
          dtype=tf.int64)
      self.decode_post_ids = tf.random_uniform(
          [self.config.batch_size, 15],
          minval=0,
          maxval=self.config.vocab_size,
          dtype=tf.int64)
      self.encode_mask = tf.ones_like(self.encode_ids)
      self.decode_pre_mask = tf.ones_like(self.decode_pre_ids)
      self.decode_post_mask = tf.ones_like(self.decode_post_ids) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:26,代碼來源:skip_thoughts_model_test.py

示例3: build_inputs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_like [as 別名]
def build_inputs(self):
    if self.mode == "inference":
      # Inference mode doesn't read from disk, so defer to parent.
      return super(ShowAndTellModel, self).build_inputs()
    else:
      # Replace disk I/O with random Tensors.
      self.images = tf.random_uniform(
          shape=[self.config.batch_size, self.config.image_height,
                 self.config.image_width, 3],
          minval=-1,
          maxval=1)
      self.input_seqs = tf.random_uniform(
          [self.config.batch_size, 15],
          minval=0,
          maxval=self.config.vocab_size,
          dtype=tf.int64)
      self.target_seqs = tf.random_uniform(
          [self.config.batch_size, 15],
          minval=0,
          maxval=self.config.vocab_size,
          dtype=tf.int64)
      self.input_mask = tf.ones_like(self.input_seqs) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:show_and_tell_model_test.py

示例4: _std

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_like [as 別名]
def _std(self):
    """Computes the current estimate of the standard deviation.

    Note that the standard deviation is not defined until at least two samples
    were seen.

    Returns:
      Tensor of current variance.
    """
    variance = tf.cond(
        self._count > 1,
        lambda: self._var_sum / tf.cast(self._count - 1, tf.float32),
        lambda: tf.ones_like(self._var_sum) * float('nan'))
    # The epsilon corrects for small negative variance values caused by
    # the algorithm. It was empirically chosen to work with all environments
    # tested.
    return tf.sqrt(variance + 1e-4) 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:19,代碼來源:normalize.py

示例5: _load_data_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_like [as 別名]
def _load_data_graph(self):
        """
        Loads the data graph consisting of the encoder and decoder input placeholders, Label (Target tip summary)
        placeholders and the weights of the hidden layer of the Seq2Seq model.

        :return: None
        """
        # input
        with tf.variable_scope("train_test", reuse=True):
            # review input - Both original and reversed
            self.enc_inp_fwd = [tf.placeholder(tf.int32, shape=(None,), name="input%i" % t)
                                for t in range(self.seq_length)]
            self.enc_inp_bwd = [tf.placeholder(tf.int32, shape=(None,), name="input%i" % t)
                                for t in range(self.seq_length)]
            # desired output
            self.labels = [tf.placeholder(tf.int32, shape=(None,), name="labels%i" % t)
                           for t in range(self.seq_length)]
            # weight of the hidden layer
            self.weights = [tf.ones_like(labels_t, dtype=tf.float32)
                            for labels_t in self.labels]

            # Decoder input: prepend some "GO" token and drop the final
            # token of the encoder input
            self.dec_inp = ([tf.zeros_like(self.labels[0], dtype=np.int32, name="GO")] + self.labels[:-1]) 
開發者ID:harpribot,項目名稱:deep-summarization,代碼行數:26,代碼來源:bidirectional.py

示例6: _load_data_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_like [as 別名]
def _load_data_graph(self):
        """
        Loads the data graph consisting of the encoder and decoder input placeholders, Label (Target tip summary)
        placeholders and the weights of the hidden layer of the Seq2Seq model.

        :return: None
        """
        # input
        with tf.variable_scope("train_test", reuse=True):
            self.enc_inp = [tf.placeholder(tf.int32, shape=(None,), name="input%i" % t)
                            for t in range(self.seq_length)]
            # desired output
            self.labels = [tf.placeholder(tf.int32, shape=(None,), name="labels%i" % t)
                           for t in range(self.seq_length)]
            # weight of the hidden layer
            self.weights = [tf.ones_like(labels_t, dtype=tf.float32)
                            for labels_t in self.labels]

            # Decoder input: prepend some "GO" token and drop the final
            # token of the encoder input
            self.dec_inp = ([tf.zeros_like(self.labels[0], dtype=np.int32, name="GO")] + self.labels[:-1]) 
開發者ID:harpribot,項目名稱:deep-summarization,代碼行數:23,代碼來源:simple.py

示例7: _load_data_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_like [as 別名]
def _load_data_graph(self):
        """
        Loads the data graph consisting of the encoder and decoder input placeholders, Label (Target tip summary)
        placeholders and the weights of the hidden layer of the Seq2Seq model.

        :return: None
        """
        # input
        with tf.variable_scope("train_test", reuse=True):
            self.enc_inp = [tf.placeholder(tf.int32, shape=(None,),
                                           name="input%i" % t)
                            for t in range(self.seq_length)]
            # desired output
            self.labels = [tf.placeholder(tf.int32, shape=(None,),
                                          name="labels%i" % t)
                           for t in range(self.seq_length)]
            # weight of the hidden layer
            self.weights = [tf.ones_like(labels_t, dtype=tf.float32)
                            for labels_t in self.labels]

            # Decoder input: prepend some "GO" token and drop the final
            # token of the encoder input
            self.dec_inp = ([tf.zeros_like(self.labels[0], dtype=np.int32, name="GO")]
                            + self.labels[:-1]) 
開發者ID:harpribot,項目名稱:deep-summarization,代碼行數:26,代碼來源:stacked_simple.py

示例8: rank_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_like [as 別名]
def rank_loss(sentence_emb, image_emb, margin=0.2):
  """Experimental rank loss, thanks to kkurach@ for the code."""
  with tf.name_scope("rank_loss"):
    # Normalize first as this is assumed in cosine similarity later.
    sentence_emb = tf.nn.l2_normalize(sentence_emb, 1)
    image_emb = tf.nn.l2_normalize(image_emb, 1)
    # Both sentence_emb and image_emb have size [batch, depth].
    scores = tf.matmul(image_emb, tf.transpose(sentence_emb))  # [batch, batch]
    diagonal = tf.diag_part(scores)  # [batch]
    cost_s = tf.maximum(0.0, margin - diagonal + scores)  # [batch, batch]
    cost_im = tf.maximum(
        0.0, margin - tf.reshape(diagonal, [-1, 1]) + scores)  # [batch, batch]
    # Clear diagonals.
    batch_size = tf.shape(sentence_emb)[0]
    empty_diagonal_mat = tf.ones_like(cost_s) - tf.eye(batch_size)
    cost_s *= empty_diagonal_mat
    cost_im *= empty_diagonal_mat
    return tf.reduce_mean(cost_s) + tf.reduce_mean(cost_im) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:20,代碼來源:slicenet.py

示例9: generator_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_like [as 別名]
def generator_loss(loss_func, fake):
    fake_loss = 0

    if loss_func == 'wgan-gp' or loss_func == 'wgan-lp':
        fake_loss = -tf.reduce_mean(fake)

    if loss_func == 'lsgan' :
        fake_loss = tf.reduce_mean(tf.square(fake - 1.0))

    if loss_func == 'gan' or loss_func == 'dragan':
        fake_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(fake), logits=fake))

    if loss_func == 'hinge':
        fake_loss = -tf.reduce_mean(fake)

    loss = fake_loss

    return loss 
開發者ID:taki0112,項目名稱:CartoonGAN-Tensorflow,代碼行數:20,代碼來源:ops.py

示例10: test_forward_tensor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_like [as 別名]
def test_forward_tensor(func, wrt, *args):
  """Test gradients of functions with TFE signatures."""

  def tangent_func():
    df = jvp(func, wrt=wrt, optimized=True, verbose=True)
    args_ = args + tuple(tf.ones_like(args[i]) for i in wrt)  # seed gradient
    return tensors_to_numpy(df(*args_))

  def reference_func():
    return tensors_to_numpy(tfe.gradients_function(func, params=wrt)(*args))

  def backup_reference_func():
    func_ = as_numpy_sig(func)
    args_ = tensors_to_numpy(args)
    return utils.numeric_grad(utils.numeric_grad(func_))(*args_)

  # TODO: Should results really be that far off?
  utils.assert_result_matches_reference(
      tangent_func, reference_func, backup_reference_func,
      tolerance=1e-4) 
開發者ID:google,項目名稱:tangent,代碼行數:22,代碼來源:tfe_utils.py

示例11: compute_interpolation_weights

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_like [as 別名]
def compute_interpolation_weights(inputs, keypoints, lengths):
  """Computes weights for PWL calibration.

  Args:
    inputs: Tensor of shape: `(D0, D1, ..., DN, 1)` which represents inputs to
      to the pwl function. A typical shape is: `(batch_size, 1)`.
    keypoints: Rank-1 tensor of shape `(num_keypoints - 1)` which represents
      left keypoint of pieces of piecewise linear function along X axis.
    lengths: Rank-1 tensor of shape `(num_keypoints - 1)` which represents
      lengths of pieces of piecewise linear function along X axis.

  Returns:
    Interpolation weights tensor of shape: `(D0, D1, ..., DN, num_keypoints)`.
  """
  weights = (inputs - keypoints) / lengths
  weights = tf.minimum(weights, 1.0)
  weights = tf.maximum(weights, 0.0)
  # Prepend 1.0 at the beginning to add bias unconditionally.
  return tf.concat([tf.ones_like(inputs), weights], axis=-1) 
開發者ID:tensorflow,項目名稱:lattice,代碼行數:21,代碼來源:pwl_calibration_lib.py

示例12: prepVars

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_like [as 別名]
def prepVars(self, f: int, U: List[Tensor],
                 X: Tensor) -> Tuple[Tensor, Tensor, Tensor]:
        if f == 0:
            U1 = U[1]
            alpha1 = self.noiseDistribution.tau
            alpha = tf.ones_like(X[:, 0])
        elif f == 1:
            U1 = U[0]
            alpha1 = tf.ones_like(X[:, 0])
            alpha = self.noiseDistribution.tau
            X = tf.transpose(X)

        U1T = tf.transpose(U1)
        A = tf.matmul(X, U1T*alpha1[..., None])
        B = tf.matmul(U1*alpha1, U1T)
        return(A, B, alpha) 
開發者ID:bethgelab,項目名稱:decompose,代碼行數:18,代碼來源:specificNormal2dLikelihood.py

示例13: test_update

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_like [as 別名]
def test_update(device, f, updateType, dtype):
    npdtype = dtype.as_numpy_dtype
    M, K, tau = (20, 30), 3, 0.1
    npU = (np.random.normal(size=(K, M[0])).astype(npdtype),
           np.random.normal(size=(K, M[1])).astype(npdtype))
    U = (tf.constant(npU[0]), tf.constant(npU[1]))
    npnoise = np.random.normal(size=M).astype(npdtype)
    npdata = np.dot(npU[0].T, npU[1]) + npnoise
    data = tf.constant(npdata, dtype=dtype)

    lh = Normal2dLikelihood(M=M, K=K, tau=tau, updateType=updateType)
    lh.init(data=data)
    lh.noiseDistribution.update = MagicMock()
    residuals = tf.ones_like(data)
    lh.residuals = MagicMock(return_value=residuals)

    lh.update(U, data)

    if updateType == UpdateType.ALL:
        lh.residuals.assert_called_once()
        lh.noiseDistribution.update.assert_called_once()
    else:
        lh.residuals.assert_not_called()
        lh.noiseDistribution.update.assert_not_called()
    tf.reset_default_graph() 
開發者ID:bethgelab,項目名稱:decompose,代碼行數:27,代碼來源:test_normal2dLikelihood.py

示例14: fitGamma

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_like [as 別名]
def fitGamma(cls, tau):
        alpha = 0.5/(tf.log(tf.reduce_mean(tau))
                     + 1e-6  # added due to numerical instability
                     - tf.reduce_mean(tf.log(tau)))
        for i in range(20):
            alpha = (1. / (1./alpha
                           + (tf.reduce_mean(tf.log(tau))
                              - tf.log(tf.reduce_mean(tau))
                              + tf.log(alpha)
                              - tf.digamma(alpha))
                           / (alpha**2*(1./alpha
                                        - tf.polygamma(tf.ones_like(alpha),
                                                       alpha)))))

        beta = alpha/tf.reduce_mean(tau)
        return(alpha, beta) 
開發者ID:bethgelab,項目名稱:decompose,代碼行數:18,代碼來源:cenNormalRankOneAlgorithms.py

示例15: cond

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_like [as 別名]
def cond(self) -> CenNnFullyElasticNetCond:
        b = self.b
        mu = self.mu
        tau = self.tau
        betaExponential = self.betaExponential
        tauLomax = self.tauLomax
        b = tf.ones_like(tauLomax)*b
        mu = tf.ones_like(tauLomax)*mu
        tau = tf.ones_like(tauLomax)*tau
        betaExponential = tf.ones_like(tauLomax)*betaExponential
        name = self.name + "Cond"
        properties = Properties(name=name,
                                drawType=self.drawType,
                                updateType=self.updateType,
                                persistent=False)
        cond = CenNnFullyElasticNetCond(b=b, mu=mu, tau=tau,
                                        betaExponential=betaExponential,
                                        beta=1./tauLomax,
                                        properties=properties)
        return(cond) 
開發者ID:bethgelab,項目名稱:decompose,代碼行數:22,代碼來源:cenNnFullyElasticNet.py


注:本文中的tensorflow.ones_like方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。