本文整理匯總了Python中tensorflow.ones_initializer方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.ones_initializer方法的具體用法?Python tensorflow.ones_initializer怎麽用?Python tensorflow.ones_initializer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.ones_initializer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_initializer [as 別名]
def __init__(self, component, name, shape, dtype):
"""Construct variables to normalize an input of given shape.
Arguments:
component: ComponentBuilder handle.
name: Human readable name to organize the variables.
shape: Shape of the layer to be normalized.
dtype: Type of the layer to be normalized.
"""
self._name = name
self._shape = shape
self._component = component
beta = tf.get_variable(
'beta_%s' % name,
shape=shape,
dtype=dtype,
initializer=tf.zeros_initializer())
gamma = tf.get_variable(
'gamma_%s' % name,
shape=shape,
dtype=dtype,
initializer=tf.ones_initializer())
self._params = [beta, gamma]
示例2: layer_norm
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_initializer [as 別名]
def layer_norm(x, filters=None, epsilon=1e-6, name=None, reuse=None):
"""Layer normalize the tensor x, averaging over the last dimension."""
if filters is None:
filters = shape_list(x)[-1]
with tf.variable_scope(
name, default_name="layer_norm", values=[x], reuse=reuse):
scale = tf.get_variable(
"layer_norm_scale", [filters], initializer=tf.ones_initializer())
bias = tf.get_variable(
"layer_norm_bias", [filters], initializer=tf.zeros_initializer())
if allow_defun:
result = layer_norm_compute(x, tf.constant(epsilon), scale, bias)
result.set_shape(x.get_shape())
else:
result = layer_norm_compute_python(x, epsilon, scale, bias)
return result
示例3: group_norm
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_initializer [as 別名]
def group_norm(x, filters=None, num_groups=8, epsilon=1e-5):
"""Group normalization as in https://arxiv.org/abs/1803.08494."""
x_shape = shape_list(x)
if filters is None:
filters = x_shape[-1]
assert len(x_shape) == 4
assert filters % num_groups == 0
# Prepare variables.
scale = tf.get_variable(
"group_norm_scale", [filters], initializer=tf.ones_initializer())
bias = tf.get_variable(
"group_norm_bias", [filters], initializer=tf.zeros_initializer())
epsilon, scale, bias = [cast_like(t, x) for t in [epsilon, scale, bias]]
# Reshape and compute group norm.
x = tf.reshape(x, x_shape[:-1] + [num_groups, filters // num_groups])
# Calculate mean and variance on heights, width, channels (not groups).
mean, variance = tf.nn.moments(x, [1, 2, 4], keep_dims=True)
norm_x = (x - mean) * tf.rsqrt(variance + epsilon)
return tf.reshape(norm_x, x_shape) * scale + bias
示例4: ln
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_initializer [as 別名]
def ln(inputs, epsilon = 1e-8, scope="ln"):
'''Applies layer normalization. See https://arxiv.org/abs/1607.06450.
inputs: A tensor with 2 or more dimensions, where the first dimension has `batch_size`.
epsilon: A floating number. A very small number for preventing ZeroDivision Error.
scope: Optional scope for `variable_scope`.
Returns:
A tensor with the same shape and data dtype as `inputs`.
'''
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
inputs_shape = inputs.get_shape()
params_shape = inputs_shape[-1:]
mean, variance = tf.nn.moments(inputs, [-1], keep_dims=True)
beta= tf.get_variable("beta", params_shape, initializer=tf.zeros_initializer())
gamma = tf.get_variable("gamma", params_shape, initializer=tf.ones_initializer())
normalized = (inputs - mean) / ( (variance + epsilon) ** (.5) )
outputs = gamma * normalized + beta
return outputs
示例5: scale_gaussian_prior
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_initializer [as 別名]
def scale_gaussian_prior(name, z, logscale_factor=3.0, trainable=True):
"""Returns N(s^i * z^i, std^i) where s^i and std^i are pre-component.
s^i is a learnable parameter with identity initialization.
std^i is optionally learnable with identity initialization.
Args:
name: variable scope.
z: input_tensor
logscale_factor: equivalent to scaling up the learning_rate by a factor
of logscale_factor.
trainable: Whether or not std^i is learnt.
"""
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
z_shape = common_layers.shape_list(z)
latent_multiplier = tf.get_variable(
"latent_multiplier", shape=z_shape, dtype=tf.float32,
initializer=tf.ones_initializer())
log_scale = tf.get_variable(
"log_scale_latent", shape=z_shape, dtype=tf.float32,
initializer=tf.zeros_initializer(), trainable=trainable)
log_scale = log_scale * logscale_factor
return tfp.distributions.Normal(
loc=latent_multiplier * z, scale=tf.exp(log_scale))
示例6: layer_normalization
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_initializer [as 別名]
def layer_normalization(self,x):
"""
x should be:[batch_size,sequence_length,d_model]
:return:
"""
filter=x.get_shape()[-1] #last dimension of x. e.g. 512
#print("layer_normalization:==================>variable_scope:","layer_normalization"+str(self.layer_index))
with tf.variable_scope("layer_normalization"+str(self.layer_index)):
# 1. normalize input by using mean and variance according to last dimension
mean=tf.reduce_mean(x,axis=-1,keepdims=True) #[batch_size,sequence_length,1]
variance=tf.reduce_mean(tf.square(x-mean),axis=-1,keepdims=True) #[batch_size,sequence_length,1]
norm_x=(x-mean)*tf.rsqrt(variance+1e-6) #[batch_size,sequence_length,d_model]
# 2. re-scale normalized input back
scale=tf.get_variable("layer_norm_scale",[filter],initializer=tf.ones_initializer) #[filter]
bias=tf.get_variable("layer_norm_bias",[filter],initializer=tf.ones_initializer) #[filter]
output=norm_x*scale+bias #[batch_size,sequence_length,d_model]
return output #[batch_size,sequence_length,d_model]
示例7: test_std_share_network_output_values
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_initializer [as 別名]
def test_std_share_network_output_values(self, output_dim, hidden_sizes):
model = GaussianMLPModel(output_dim=output_dim,
hidden_sizes=hidden_sizes,
std_share_network=True,
hidden_nonlinearity=None,
std_parameterization='exp',
hidden_w_init=tf.ones_initializer(),
output_w_init=tf.ones_initializer())
dist = model.build(self.input_var).dist
mean, log_std = self.sess.run(
[dist.loc, tf.math.log(dist.stddev())],
feed_dict={self.input_var: self.obs})
expected_mean = np.full([1, 1, output_dim], 5 * np.prod(hidden_sizes))
expected_log_std = np.full([1, 1, output_dim],
5 * np.prod(hidden_sizes))
assert np.array_equal(mean, expected_mean)
assert np.array_equal(log_std, expected_log_std)
示例8: test_without_std_share_network_output_values
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_initializer [as 別名]
def test_without_std_share_network_output_values(self, output_dim,
hidden_sizes):
model = GaussianMLPModel(output_dim=output_dim,
hidden_sizes=hidden_sizes,
init_std=2,
std_share_network=False,
adaptive_std=False,
hidden_nonlinearity=None,
hidden_w_init=tf.ones_initializer(),
output_w_init=tf.ones_initializer())
dist = model.build(self.input_var).dist
mean, log_std = self.sess.run(
[dist.loc, tf.math.log(dist.stddev())],
feed_dict={self.input_var: self.obs})
expected_mean = np.full([1, 1, output_dim], 5 * np.prod(hidden_sizes))
expected_log_std = np.full([1, 1, output_dim], np.log(2.))
assert np.array_equal(mean, expected_mean)
assert np.allclose(log_std, expected_log_std)
示例9: test_adaptive_std_network_output_values
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_initializer [as 別名]
def test_adaptive_std_network_output_values(self, output_dim, hidden_sizes,
std_hidden_sizes):
model = GaussianMLPModel(output_dim=output_dim,
std_share_network=False,
hidden_sizes=hidden_sizes,
std_hidden_sizes=std_hidden_sizes,
adaptive_std=True,
hidden_nonlinearity=None,
hidden_w_init=tf.ones_initializer(),
output_w_init=tf.ones_initializer(),
std_hidden_nonlinearity=None,
std_hidden_w_init=tf.ones_initializer(),
std_output_w_init=tf.ones_initializer())
dist = model.build(self.input_var).dist
mean, log_std = self.sess.run(
[dist.loc, tf.math.log(dist.stddev())],
feed_dict={self.input_var: self.obs})
expected_mean = np.full([1, 1, output_dim], 5 * np.prod(hidden_sizes))
expected_log_std = np.full([1, 1, output_dim],
5 * np.prod(std_hidden_sizes))
assert np.array_equal(mean, expected_mean)
assert np.array_equal(log_std, expected_log_std)
示例10: test_softplus_output_values
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_initializer [as 別名]
def test_softplus_output_values(self, output_dim, hidden_sizes):
model = GaussianMLPModel(output_dim=output_dim,
hidden_sizes=hidden_sizes,
hidden_nonlinearity=None,
std_share_network=False,
adaptive_std=False,
init_std=2,
std_parameterization='softplus',
hidden_w_init=tf.ones_initializer(),
output_w_init=tf.ones_initializer())
dist = model.build(self.input_var).dist
mean, log_std = self.sess.run(
[dist.loc, tf.math.log(dist.stddev())],
feed_dict={self.input_var: self.obs})
expected_mean = np.full([1, 1, output_dim], 5 * np.prod(hidden_sizes))
expected_std_param = np.full([1, 1, output_dim], np.log(np.exp(2) - 1))
expected_log_std = np.log(np.log(1. + np.exp(expected_std_param)))
assert np.array_equal(mean, expected_mean)
assert np.allclose(log_std, expected_log_std)
示例11: test_is_pickleable
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_initializer [as 別名]
def test_is_pickleable(self, output_dim, hidden_sizes):
model = CategoricalMLPModel(output_dim=output_dim,
hidden_sizes=hidden_sizes,
hidden_nonlinearity=None,
hidden_w_init=tf.ones_initializer(),
output_w_init=tf.ones_initializer())
dist = model.build(self.input_var).dist
# assign bias to all one
with tf.compat.v1.variable_scope('CategoricalMLPModel/mlp',
reuse=True):
bias = tf.compat.v1.get_variable('hidden_0/bias')
bias.load(tf.ones_like(bias).eval())
output1 = self.sess.run(dist.probs,
feed_dict={self.input_var: self.obs})
h = pickle.dumps(model)
with tf.compat.v1.Session(graph=tf.Graph()) as sess:
input_var = tf.compat.v1.placeholder(tf.float32, shape=(None, 5))
model_pickled = pickle.loads(h)
dist2 = model_pickled.build(input_var).dist
output2 = sess.run(dist2.probs, feed_dict={input_var: self.obs})
assert np.array_equal(output1, output2)
示例12: test_output_values_merging
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_initializer [as 別名]
def test_output_values_merging(self, output_dim, hidden_sizes):
model = MLPMergeModel(output_dim=output_dim,
hidden_sizes=hidden_sizes,
concat_layer=0,
hidden_nonlinearity=None,
hidden_w_init=tf.ones_initializer(),
output_w_init=tf.ones_initializer())
input_var2 = tf.compat.v1.placeholder(tf.float32, shape=(None, 5))
obs2 = np.ones((1, 5))
outputs = model.build(self.input_var, input_var2).outputs
output = self.sess.run(outputs,
feed_dict={
self.input_var: self.obs,
input_var2: obs2
})
expected_output = np.full([1, output_dim], 10 * np.prod(hidden_sizes))
assert np.array_equal(output, expected_output)
# yapf: disable
示例13: test_is_pickleable
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_initializer [as 別名]
def test_is_pickleable(self, output_dim, hidden_sizes):
model = MLPModel(output_dim=output_dim,
hidden_sizes=hidden_sizes,
hidden_nonlinearity=None,
hidden_w_init=tf.ones_initializer(),
output_w_init=tf.ones_initializer())
outputs = model.build(self.input_var).outputs
# assign bias to all one
with tf.compat.v1.variable_scope('MLPModel/mlp', reuse=True):
bias = tf.compat.v1.get_variable('hidden_0/bias')
bias.load(tf.ones_like(bias).eval())
output1 = self.sess.run(outputs, feed_dict={self.input_var: self.obs})
h = pickle.dumps(model)
with tf.compat.v1.Session(graph=tf.Graph()) as sess:
input_var = tf.compat.v1.placeholder(tf.float32, shape=(None, 5))
model_pickled = pickle.loads(h)
outputs = model_pickled.build(input_var).outputs
output2 = sess.run(outputs, feed_dict={input_var: self.obs})
assert np.array_equal(output1, output2)
示例14: layer_norm
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_initializer [as 別名]
def layer_norm(inputs, epsilon=1e-6, dtype=None, scope=None):
"""
Layer Normalization
:param inputs: A Tensor of shape [..., channel_size]
:param epsilon: A floating number
:param dtype: An optional instance of tf.DType
:param scope: An optional string
:returns: A Tensor with the same shape as inputs
"""
with tf.variable_scope(scope, default_name="layer_norm", values=[inputs],
dtype=dtype):
channel_size = inputs.get_shape().as_list()[-1]
scale = tf.get_variable("scale", shape=[channel_size],
initializer=tf.ones_initializer())
offset = tf.get_variable("offset", shape=[channel_size],
initializer=tf.zeros_initializer())
mean = tf.reduce_mean(inputs, -1, True)
variance = tf.reduce_mean(tf.square(inputs - mean), -1, True)
norm_inputs = (inputs - mean) * tf.rsqrt(variance + epsilon)
return norm_inputs * scale + offset
示例15: batch_norm
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones_initializer [as 別名]
def batch_norm(x, is_training, eps=EPS, decay=0.9, affine=True, name='BatchNorm2d'):
from tensorflow.python.training.moving_averages import assign_moving_average
with tf.variable_scope(name):
params_shape = x.shape[-1:]
moving_mean = tf.get_variable(name='mean', shape=params_shape, initializer=tf.zeros_initializer, trainable=False)
moving_var = tf.get_variable(name='variance', shape=params_shape, initializer=tf.ones_initializer, trainable=False)
def mean_var_with_update():
mean_this_batch, variance_this_batch = tf.nn.moments(x, list(range(len(x.shape) - 1)), name='moments')
with tf.control_dependencies([
assign_moving_average(moving_mean, mean_this_batch, decay),
assign_moving_average(moving_var, variance_this_batch, decay)
]):
return tf.identity(mean_this_batch), tf.identity(variance_this_batch)
mean, variance = tf.cond(is_training, mean_var_with_update, lambda: (moving_mean, moving_var))
if affine: # 如果要用beta和gamma進行放縮
beta = tf.get_variable('beta', params_shape, initializer=tf.zeros_initializer)
gamma = tf.get_variable('gamma', params_shape, initializer=tf.ones_initializer)
normed = tf.nn.batch_normalization(x, mean=mean, variance=variance, offset=beta, scale=gamma, variance_epsilon=eps)
else:
normed = tf.nn.batch_normalization(x, mean=mean, variance=variance, offset=None, scale=None, variance_epsilon=eps)
return normed