當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.ones方法代碼示例

本文整理匯總了Python中tensorflow.ones方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.ones方法的具體用法?Python tensorflow.ones怎麽用?Python tensorflow.ones使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.ones方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: make_update_op

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones [as 別名]
def make_update_op(self, upd_idxs, upd_keys, upd_vals,
                     batch_size, use_recent_idx, intended_output):
    """Function that creates all the update ops."""
    mem_age_incr = self.mem_age.assign_add(tf.ones([self.memory_size],
                                                   dtype=tf.float32))
    with tf.control_dependencies([mem_age_incr]):
      mem_age_upd = tf.scatter_update(
          self.mem_age, upd_idxs, tf.zeros([batch_size], dtype=tf.float32))

    mem_key_upd = tf.scatter_update(
        self.mem_keys, upd_idxs, upd_keys)
    mem_val_upd = tf.scatter_update(
        self.mem_vals, upd_idxs, upd_vals)

    if use_recent_idx:
      recent_idx_upd = tf.scatter_update(
          self.recent_idx, intended_output, upd_idxs)
    else:
      recent_idx_upd = tf.group()

    return tf.group(mem_age_upd, mem_key_upd, mem_val_upd, recent_idx_upd) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:23,代碼來源:memory.py

示例2: expanded_shape

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones [as 別名]
def expanded_shape(orig_shape, start_dim, num_dims):
  """Inserts multiple ones into a shape vector.

  Inserts an all-1 vector of length num_dims at position start_dim into a shape.
  Can be combined with tf.reshape to generalize tf.expand_dims.

  Args:
    orig_shape: the shape into which the all-1 vector is added (int32 vector)
    start_dim: insertion position (int scalar)
    num_dims: length of the inserted all-1 vector (int scalar)
  Returns:
    An int32 vector of length tf.size(orig_shape) + num_dims.
  """
  with tf.name_scope('ExpandedShape'):
    start_dim = tf.expand_dims(start_dim, 0)  # scalar to rank-1
    before = tf.slice(orig_shape, [0], start_dim)
    add_shape = tf.ones(tf.reshape(num_dims, [1]), dtype=tf.int32)
    after = tf.slice(orig_shape, start_dim, [-1])
    new_shape = tf.concat([before, add_shape, after], 0)
    return new_shape 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:22,代碼來源:ops.py

示例3: _save_checkpoint_from_mock_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones [as 別名]
def _save_checkpoint_from_mock_model(self, checkpoint_path,
                                       use_moving_averages):
    g = tf.Graph()
    with g.as_default():
      mock_model = FakeModel()
      preprocessed_inputs = mock_model.preprocess(
          tf.ones([1, 3, 4, 3], tf.float32))
      predictions = mock_model.predict(preprocessed_inputs)
      mock_model.postprocess(predictions)
      if use_moving_averages:
        tf.train.ExponentialMovingAverage(0.0).apply()
      saver = tf.train.Saver()
      init = tf.global_variables_initializer()
      with self.test_session() as sess:
        sess.run(init)
        saver.save(sess, checkpoint_path) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:exporter_test.py

示例4: testReturnsCorrectLoss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones [as 別名]
def testReturnsCorrectLoss(self):
    batch_size = 3
    num_anchors = 10
    code_size = 4
    prediction_tensor = tf.ones([batch_size, num_anchors, code_size])
    target_tensor = tf.zeros([batch_size, num_anchors, code_size])
    weights = tf.constant([[1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
                           [1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
                           [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]], tf.float32)
    loss_op = losses.WeightedL2LocalizationLoss()
    loss = loss_op(prediction_tensor, target_tensor, weights=weights)

    expected_loss = (3 * 5 * 4) / 2.0
    with self.test_session() as sess:
      loss_output = sess.run(loss)
      self.assertAllClose(loss_output, expected_loss) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:losses_test.py

示例5: testReturnsCorrectNanLoss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones [as 別名]
def testReturnsCorrectNanLoss(self):
    batch_size = 3
    num_anchors = 10
    code_size = 4
    prediction_tensor = tf.ones([batch_size, num_anchors, code_size])
    target_tensor = tf.concat([
        tf.zeros([batch_size, num_anchors, code_size / 2]),
        tf.ones([batch_size, num_anchors, code_size / 2]) * np.nan
    ], axis=2)
    weights = tf.ones([batch_size, num_anchors])
    loss_op = losses.WeightedL2LocalizationLoss()
    loss = loss_op(prediction_tensor, target_tensor, weights=weights,
                   ignore_nan_targets=True)

    expected_loss = (3 * 5 * 4) / 2.0
    with self.test_session() as sess:
      loss_output = sess.run(loss)
      self.assertAllClose(loss_output, expected_loss) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:20,代碼來源:losses_test.py

示例6: test_convert_to_absolute_and_back

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones [as 別名]
def test_convert_to_absolute_and_back(self):
    coordinates = np.random.uniform(size=(100, 4))
    coordinates = np.sort(coordinates)
    coordinates[99, :] = [0, 0, 1, 1]
    img = tf.ones((128, 202, 202, 3))

    boxlist = box_list.BoxList(tf.constant(coordinates, tf.float32))
    boxlist = box_list_ops.to_absolute_coordinates(boxlist,
                                                   tf.shape(img)[1],
                                                   tf.shape(img)[2])
    boxlist = box_list_ops.to_normalized_coordinates(boxlist,
                                                     tf.shape(img)[1],
                                                     tf.shape(img)[2])

    with self.test_session() as sess:
      out = sess.run(boxlist.get())
      self.assertAllClose(out, coordinates) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:box_list_ops_test.py

示例7: ones_matrix_band_part

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones [as 別名]
def ones_matrix_band_part(rows, cols, num_lower, num_upper, out_shape=None):
  """Matrix band part of ones."""
  if all([isinstance(el, int) for el in [rows, cols, num_lower, num_upper]]):
    # Needed info is constant, so we construct in numpy
    if num_lower < 0:
      num_lower = rows - 1
    if num_upper < 0:
      num_upper = cols - 1
    lower_mask = np.tri(cols, rows, num_lower).T
    upper_mask = np.tri(rows, cols, num_upper)
    band = np.ones((rows, cols)) * lower_mask * upper_mask
    if out_shape:
      band = band.reshape(out_shape)
    band = tf.constant(band, tf.float32)
  else:
    band = tf.matrix_band_part(
        tf.ones([rows, cols]), tf.cast(num_lower, tf.int64),
        tf.cast(num_upper, tf.int64))
    if out_shape:
      band = tf.reshape(band, out_shape)

  return band 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:24,代碼來源:common_layers.py

示例8: getStatsEigen

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones [as 別名]
def getStatsEigen(self, stats=None):
        if len(self.stats_eigen) == 0:
            stats_eigen = {}
            if stats is None:
                stats = self.stats

            tmpEigenCache = {}
            with tf.device('/cpu:0'):
                for var in stats:
                    for key in ['fprop_concat_stats', 'bprop_concat_stats']:
                        for stats_var in stats[var][key]:
                            if stats_var not in tmpEigenCache:
                                stats_dim = stats_var.get_shape()[1].value
                                e = tf.Variable(tf.ones(
                                    [stats_dim]), name='KFAC_FAC/' + stats_var.name.split(':')[0] + '/e', trainable=False)
                                Q = tf.Variable(tf.diag(tf.ones(
                                    [stats_dim])), name='KFAC_FAC/' + stats_var.name.split(':')[0] + '/Q', trainable=False)
                                stats_eigen[stats_var] = {'e': e, 'Q': Q}
                                tmpEigenCache[
                                    stats_var] = stats_eigen[stats_var]
                            else:
                                stats_eigen[stats_var] = tmpEigenCache[
                                    stats_var]
            self.stats_eigen = stats_eigen
        return self.stats_eigen 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:27,代碼來源:kfac.py

示例9: init_param

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones [as 別名]
def init_param(self):
		idm = self.input_dim
		hs = self.hidden_size
		ws = len(self.window)
		nf = idm * ws
		# author's special initlaization strategy.
		self.Wemb = tf.get_variable(name=self.name + '_Wemb', shape=[self.vocab_size, idm], dtype=tf.float32, initializer=tf.random_uniform_initializer())
		self.bhid = tf.get_variable(name=self.name + '_bhid', shape=[self.vocab_size], dtype=tf.float32, initializer=tf.zeros_initializer())
		self.Vhid = tf.get_variable(name=self.name + '_Vhid', shape=[hs, idm], dtype=tf.float32, initializer=tf.random_uniform_initializer())
		self.Vhid = dot(self.Vhid, self.Wemb) # [hidden_size, vocab_size]
		self.i2h_W = tf.get_variable(name=self.name + '_i2h_W', shape=[idm, hs * 4], dtype=tf.float32, initializer=tf.random_uniform_initializer())
		self.h2h_W = tf.get_variable(name=self.name + '_h2h_W', shape=[hs, hs * 4], dtype=tf.float32, initializer=tf.orthogonal_initializer())
		self.z2h_W = tf.get_variable(name=self.name + '_z2h_W', shape=[nf, hs * 4], dtype=tf.float32, initializer=tf.random_uniform_initializer())
		b_init_1 = tf.zeros((hs,))
		b_init_2 = tf.ones((hs,)) * 3
		b_init_3 = tf.zeros((hs,))
		b_init_4 = tf.zeros((hs,))
		b_init = tf.concat([b_init_1, b_init_2, b_init_3, b_init_4], axis=0)
		# b_init = tf.constant(b_init)
		# self.b = tf.get_variable(name=self.name + '_b', shape=[hs * 4], dtype=tf.float32, initializer=b_init)
		self.b = tf.get_variable(name=self.name + '_b', dtype=tf.float32, initializer=b_init) # ValueError: If initializer is a constant, do not specify shape.
		self.C0 = tf.get_variable(name=self.name + '_C0', shape=[nf, hs], dtype=tf.float32, initializer=tf.random_uniform_initializer())
		self.b0 = tf.get_variable(name=self.name + '_b0', shape=[hs], dtype=tf.float32, initializer=tf.zeros_initializer()) 
開發者ID:Jeff-HOU,項目名稱:UROP-Adversarial-Feature-Matching-for-Text-Generation,代碼行數:25,代碼來源:generator.py

示例10: test_convert_to_normalized_and_back

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones [as 別名]
def test_convert_to_normalized_and_back(self):
    coordinates = np.random.uniform(size=(100, 4))
    coordinates = np.round(np.sort(coordinates) * 200)
    coordinates[:, 2:4] += 1
    coordinates[99, :] = [0, 0, 201, 201]
    img = tf.ones((128, 202, 202, 3))

    boxlist = box_list.BoxList(tf.constant(coordinates, tf.float32))
    boxlist = box_list_ops.to_normalized_coordinates(boxlist,
                                                     tf.shape(img)[1],
                                                     tf.shape(img)[2])
    boxlist = box_list_ops.to_absolute_coordinates(boxlist,
                                                   tf.shape(img)[1],
                                                   tf.shape(img)[2])

    with self.test_session() as sess:
      out = sess.run(boxlist.get())
      self.assertAllClose(out, coordinates) 
開發者ID:datitran,項目名稱:object_detector_app,代碼行數:20,代碼來源:box_list_ops_test.py

示例11: test_output_size_nn_upsample_conv

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones [as 別名]
def test_output_size_nn_upsample_conv(self):
    batch_size = 2
    height, width = 256, 256
    num_outputs = 4

    images = tf.ones((batch_size, height, width, 3))
    with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()):
      logits, _ = pix2pix.pix2pix_generator(
          images, num_outputs, blocks=self._reduced_default_blocks(),
          upsample_method='nn_upsample_conv')

    with self.test_session() as session:
      session.run(tf.global_variables_initializer())
      np_outputs = session.run(logits)
      self.assertListEqual([batch_size, height, width, num_outputs],
                           list(np_outputs.shape)) 
開發者ID:leimao,項目名稱:DeepLab_v3,代碼行數:18,代碼來源:pix2pix_test.py

示例12: test_output_size_conv2d_transpose

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones [as 別名]
def test_output_size_conv2d_transpose(self):
    batch_size = 2
    height, width = 256, 256
    num_outputs = 4

    images = tf.ones((batch_size, height, width, 3))
    with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()):
      logits, _ = pix2pix.pix2pix_generator(
          images, num_outputs, blocks=self._reduced_default_blocks(),
          upsample_method='conv2d_transpose')

    with self.test_session() as session:
      session.run(tf.global_variables_initializer())
      np_outputs = session.run(logits)
      self.assertListEqual([batch_size, height, width, num_outputs],
                           list(np_outputs.shape)) 
開發者ID:leimao,項目名稱:DeepLab_v3,代碼行數:18,代碼來源:pix2pix_test.py

示例13: test_block_number_dictates_number_of_layers

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones [as 別名]
def test_block_number_dictates_number_of_layers(self):
    batch_size = 2
    height, width = 256, 256
    num_outputs = 4

    images = tf.ones((batch_size, height, width, 3))
    blocks = [
        pix2pix.Block(64, 0.5),
        pix2pix.Block(128, 0),
    ]
    with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()):
      _, end_points = pix2pix.pix2pix_generator(
          images, num_outputs, blocks)

    num_encoder_layers = 0
    num_decoder_layers = 0
    for end_point in end_points:
      if end_point.startswith('encoder'):
        num_encoder_layers += 1
      elif end_point.startswith('decoder'):
        num_decoder_layers += 1

    self.assertEqual(num_encoder_layers, len(blocks))
    self.assertEqual(num_decoder_layers, len(blocks)) 
開發者ID:leimao,項目名稱:DeepLab_v3,代碼行數:26,代碼來源:pix2pix_test.py

示例14: test_four_layers

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones [as 別名]
def test_four_layers(self):
    batch_size = 2
    input_size = 256

    output_size = self._layer_output_size(input_size)
    output_size = self._layer_output_size(output_size)
    output_size = self._layer_output_size(output_size)
    output_size = self._layer_output_size(output_size, stride=1)
    output_size = self._layer_output_size(output_size, stride=1)

    images = tf.ones((batch_size, input_size, input_size, 3))
    with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()):
      logits, end_points = pix2pix.pix2pix_discriminator(
          images, num_filters=[64, 128, 256, 512])
    self.assertListEqual([batch_size, output_size, output_size, 1],
                         logits.shape.as_list())
    self.assertListEqual([batch_size, output_size, output_size, 1],
                         end_points['predictions'].shape.as_list()) 
開發者ID:leimao,項目名稱:DeepLab_v3,代碼行數:20,代碼來源:pix2pix_test.py

示例15: create_attention_mask_from_input_mask

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ones [as 別名]
def create_attention_mask_from_input_mask(from_tensor, to_mask):
    """Create 3D attention mask from a 2D tensor mask.

    Args:
      from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...].
      to_mask: int32 Tensor of shape [batch_size, to_seq_length].

    Returns:
      float Tensor of shape [batch_size, from_seq_length, to_seq_length].
    """
    from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
    batch_size = from_shape[0]
    from_seq_length = from_shape[1]

    to_shape = get_shape_list(to_mask, expected_rank=2)
    to_seq_length = to_shape[1]

    to_mask = tf.cast(
        tf.reshape(to_mask, [batch_size, 1, to_seq_length]), tf.float32)

    # We don't assume that `from_tensor` is a mask (although it could be). We
    # don't actually care if we attend *from* padding tokens (only *to* padding)
    # tokens so we create a tensor of all ones.
    #
    # `broadcast_ones` = [batch_size, from_seq_length, 1]
    broadcast_ones = tf.ones(
        shape=[batch_size, from_seq_length, 1], dtype=tf.float32)

    # Here we broadcast along two dimensions to create the mask.
    mask = broadcast_ones * to_mask

    return mask 
開發者ID:Socialbird-AILab,項目名稱:BERT-Classification-Tutorial,代碼行數:34,代碼來源:modeling.py


注:本文中的tensorflow.ones方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。