本文整理匯總了Python中tensorflow.one_hot方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.one_hot方法的具體用法?Python tensorflow.one_hot怎麽用?Python tensorflow.one_hot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.one_hot方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _build_input
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import one_hot [as 別名]
def _build_input(self):
self.tails = tf.placeholder(tf.int32, [None])
self.heads = tf.placeholder(tf.int32, [None])
self.targets = tf.one_hot(indices=self.heads, depth=self.num_entity)
if not self.query_is_language:
self.queries = tf.placeholder(tf.int32, [None, self.num_step])
self.query_embedding_params = tf.Variable(self._random_uniform_unit(
self.num_query + 1, # <END> token
self.query_embed_size),
dtype=tf.float32)
rnn_inputs = tf.nn.embedding_lookup(self.query_embedding_params,
self.queries)
else:
self.queries = tf.placeholder(tf.int32, [None, self.num_step, self.num_word])
self.vocab_embedding_params = tf.Variable(self._random_uniform_unit(
self.num_vocab + 1, # <END> token
self.vocab_embed_size),
dtype=tf.float32)
embedded_query = tf.nn.embedding_lookup(self.vocab_embedding_params,
self.queries)
rnn_inputs = tf.reduce_mean(embedded_query, axis=2)
return rnn_inputs
示例2: label_smoothing_regularization
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import one_hot [as 別名]
def label_smoothing_regularization(self, chars_labels, weight=0.1):
"""Applies a label smoothing regularization.
Uses the same method as in https://arxiv.org/abs/1512.00567.
Args:
chars_labels: ground truth ids of charactes,
shape=[batch_size, seq_length];
weight: label-smoothing regularization weight.
Returns:
A sensor with the same shape as the input.
"""
one_hot_labels = tf.one_hot(
chars_labels, depth=self._params.num_char_classes, axis=-1)
pos_weight = 1.0 - weight
neg_weight = weight / self._params.num_char_classes
return one_hot_labels * pos_weight + neg_weight
示例3: visit_count_fc
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import one_hot [as 別名]
def visit_count_fc(visit_count, last_visit, embed_neurons, wt_decay, fc_dropout):
with tf.variable_scope('embed_visit_count'):
visit_count = tf.reshape(visit_count, shape=[-1])
last_visit = tf.reshape(last_visit, shape=[-1])
visit_count = tf.clip_by_value(visit_count, clip_value_min=-1,
clip_value_max=15)
last_visit = tf.clip_by_value(last_visit, clip_value_min=-1,
clip_value_max=15)
visit_count = tf.one_hot(visit_count, depth=16, axis=1, dtype=tf.float32,
on_value=10., off_value=0.)
last_visit = tf.one_hot(last_visit, depth=16, axis=1, dtype=tf.float32,
on_value=10., off_value=0.)
f = tf.concat([visit_count, last_visit], 1)
x, _ = tf_utils.fc_network(
f, neurons=embed_neurons, wt_decay=wt_decay, name='visit_count_embed',
offset=0, batch_norm_param=None, dropout_ratio=fc_dropout,
is_training=is_training)
return x
示例4: one_hot_encoding
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import one_hot [as 別名]
def one_hot_encoding(labels, num_classes=None):
"""One-hot encodes the multiclass labels.
Example usage:
labels = tf.constant([1, 4], dtype=tf.int32)
one_hot = OneHotEncoding(labels, num_classes=5)
one_hot.eval() # evaluates to [0, 1, 0, 0, 1]
Args:
labels: A tensor of shape [None] corresponding to the labels.
num_classes: Number of classes in the dataset.
Returns:
onehot_labels: a tensor of shape [num_classes] corresponding to the one hot
encoding of the labels.
Raises:
ValueError: if num_classes is not specified.
"""
with tf.name_scope('OneHotEncoding', values=[labels]):
if num_classes is None:
raise ValueError('num_classes must be specified')
labels = tf.one_hot(labels, num_classes, 1, 0)
return tf.reduce_max(labels, 0)
示例5: log_prob_action
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import one_hot [as 別名]
def log_prob_action(self, action, logits,
sampling_dim, act_dim, act_type):
"""Calculate log-prob of action sampled from distribution."""
if self.env_spec.is_discrete(act_type):
act_log_prob = tf.reduce_sum(
tf.one_hot(action, act_dim) * tf.nn.log_softmax(logits), -1)
elif self.env_spec.is_box(act_type):
means = logits[:, :sampling_dim / 2]
std = logits[:, sampling_dim / 2:]
act_log_prob = (- 0.5 * tf.log(2 * np.pi * tf.square(std))
- 0.5 * tf.square(action - means) / tf.square(std))
act_log_prob = tf.reduce_sum(act_log_prob, -1)
else:
assert False
return act_log_prob
示例6: _testBuildDefaultModel
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import one_hot [as 別名]
def _testBuildDefaultModel(self):
images = tf.to_float(np.random.rand(32, 28, 28, 1))
labels = {}
labels['classes'] = tf.one_hot(
tf.to_int32(np.random.randint(0, 9, (32))), 10)
params = {
'use_separation': True,
'layers_to_regularize': 'fc3',
'weight_decay': 0.0,
'ps_tasks': 1,
'domain_separation_startpoint': 1,
'alpha_weight': 1,
'beta_weight': 1,
'gamma_weight': 1,
'recon_loss_name': 'sum_of_squares',
'decoder_name': 'small_decoder',
'encoder_name': 'default_encoder',
}
return images, labels, params
示例7: set_precision
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import one_hot [as 別名]
def set_precision(predictions, labels,
weights_fn=common_layers.weights_nonzero):
"""Precision of set predictions.
Args:
predictions : A Tensor of scores of shape [batch, nlabels].
labels: A Tensor of int32s giving true set elements,
of shape [batch, seq_length].
weights_fn: A function to weight the elements.
Returns:
hits: A Tensor of shape [batch, nlabels].
weights: A Tensor of shape [batch, nlabels].
"""
with tf.variable_scope("set_precision", values=[predictions, labels]):
labels = tf.squeeze(labels, [2, 3])
weights = weights_fn(labels)
labels = tf.one_hot(labels, predictions.shape[-1])
labels = tf.reduce_max(labels, axis=1)
labels = tf.cast(labels, tf.bool)
return tf.to_float(tf.equal(labels, predictions)), weights
示例8: set_recall
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import one_hot [as 別名]
def set_recall(predictions, labels, weights_fn=common_layers.weights_nonzero):
"""Recall of set predictions.
Args:
predictions : A Tensor of scores of shape [batch, nlabels].
labels: A Tensor of int32s giving true set elements,
of shape [batch, seq_length].
weights_fn: A function to weight the elements.
Returns:
hits: A Tensor of shape [batch, nlabels].
weights: A Tensor of shape [batch, nlabels].
"""
with tf.variable_scope("set_recall", values=[predictions, labels]):
labels = tf.squeeze(labels, [2, 3])
weights = weights_fn(labels)
labels = tf.one_hot(labels, predictions.shape[-1])
labels = tf.reduce_max(labels, axis=1)
labels = tf.cast(labels, tf.bool)
return tf.to_float(tf.equal(labels, predictions)), weights
示例9: sigmoid_precision_one_hot
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import one_hot [as 別名]
def sigmoid_precision_one_hot(logits, labels, weights_fn=None):
"""Calculate precision for a set, given one-hot labels and logits.
Predictions are converted to one-hot,
as predictions[example][arg-max(example)] = 1
Args:
logits: Tensor of size [batch-size, o=1, p=1, num-classes]
labels: Tensor of size [batch-size, o=1, p=1, num-classes]
weights_fn: Function that takes in labels and weighs examples (unused)
Returns:
precision (scalar), weights
"""
with tf.variable_scope("sigmoid_precision_one_hot", values=[logits, labels]):
del weights_fn
num_classes = logits.shape[-1]
predictions = tf.nn.sigmoid(logits)
predictions = tf.argmax(predictions, -1)
predictions = tf.one_hot(predictions, num_classes)
_, precision = tf.metrics.precision(labels=labels, predictions=predictions)
return precision, tf.constant(1.0)
示例10: sigmoid_recall_one_hot
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import one_hot [as 別名]
def sigmoid_recall_one_hot(logits, labels, weights_fn=None):
"""Calculate recall for a set, given one-hot labels and logits.
Predictions are converted to one-hot,
as predictions[example][arg-max(example)] = 1
Args:
logits: Tensor of size [batch-size, o=1, p=1, num-classes]
labels: Tensor of size [batch-size, o=1, p=1, num-classes]
weights_fn: Function that takes in labels and weighs examples (unused)
Returns:
recall (scalar), weights
"""
with tf.variable_scope("sigmoid_recall_one_hot", values=[logits, labels]):
del weights_fn
num_classes = logits.shape[-1]
predictions = tf.nn.sigmoid(logits)
predictions = tf.argmax(predictions, -1)
predictions = tf.one_hot(predictions, num_classes)
_, recall = tf.metrics.recall(labels=labels, predictions=predictions)
return recall, tf.constant(1.0)
示例11: testSequenceEditDistanceMetric
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import one_hot [as 別名]
def testSequenceEditDistanceMetric(self):
predictions = np.array([[3, 4, 5, 1, 0, 0],
[2, 1, 3, 4, 0, 0],
[2, 1, 3, 4, 0, 0]])
# Targets are just a bit different:
# - first sequence has a different prediction
# - second sequence has a different prediction and one extra step
# - third sequence is identical
targets = np.array([[5, 4, 5, 1, 0, 0],
[2, 5, 3, 4, 1, 0],
[2, 1, 3, 4, 0, 0]])
# Reshape to match expected input format by metric fns.
predictions = np.reshape(predictions, [3, 6, 1, 1])
targets = np.reshape(targets, [3, 6, 1, 1])
with self.test_session() as session:
scores, weight = metrics.sequence_edit_distance(
tf.one_hot(predictions, depth=6, dtype=tf.float32),
tf.constant(targets, dtype=tf.int32))
session.run(tf.global_variables_initializer())
actual_scores, actual_weight = session.run([scores, weight])
self.assertAlmostEqual(actual_scores, 3.0 / 13)
self.assertEqual(actual_weight, 13)
示例12: testMultilabelMatch3
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import one_hot [as 別名]
def testMultilabelMatch3(self):
predictions = np.random.randint(1, 5, size=(100, 1, 1, 1))
targets = np.random.randint(1, 5, size=(100, 10, 1, 1))
weights = np.random.randint(0, 2, size=(100, 1, 1, 1))
targets *= weights
predictions_repeat = np.repeat(predictions, 10, axis=1)
expected = (predictions_repeat == targets).astype(float)
expected = np.sum(expected, axis=(1, 2, 3))
expected = np.minimum(expected / 3.0, 1.)
expected = np.sum(expected * weights[:, 0, 0, 0]) / weights.shape[0]
with self.test_session() as session:
scores, weights_ = metrics.multilabel_accuracy_match3(
tf.one_hot(predictions, depth=5, dtype=tf.float32),
tf.constant(targets, dtype=tf.int32))
a, a_op = tf.metrics.mean(scores, weights_)
session.run(tf.local_variables_initializer())
session.run(tf.global_variables_initializer())
_ = session.run(a_op)
actual = session.run(a)
self.assertAlmostEqual(actual, expected, places=6)
示例13: testRougeLMetricE2E
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import one_hot [as 別名]
def testRougeLMetricE2E(self):
vocab_size = 4
batch_size = 12
seq_length = 12
predictions = tf.one_hot(
np.random.randint(vocab_size, size=(batch_size, seq_length, 1, 1)),
depth=4,
dtype=tf.float32)
targets = np.random.randint(4, size=(12, 12, 1, 1))
with self.test_session() as session:
scores, _ = rouge.rouge_l_fscore(
predictions,
tf.constant(targets, dtype=tf.int32))
a = tf.reduce_mean(scores)
session.run(tf.global_variables_initializer())
session.run(a)
示例14: vq_nearest_neighbor
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import one_hot [as 別名]
def vq_nearest_neighbor(x, hparams):
"""Find the nearest element in means to elements in x."""
bottleneck_size = 2**hparams.bottleneck_bits
means = hparams.means
x_norm_sq = tf.reduce_sum(tf.square(x), axis=-1, keepdims=True)
means_norm_sq = tf.reduce_sum(tf.square(means), axis=-1, keepdims=True)
scalar_prod = tf.matmul(x, means, transpose_b=True)
dist = x_norm_sq + tf.transpose(means_norm_sq) - 2 * scalar_prod
if hparams.bottleneck_kind == "em":
x_means_idx = tf.multinomial(-dist, num_samples=hparams.num_samples)
x_means_hot = tf.one_hot(
x_means_idx, depth=bottleneck_size)
x_means_hot = tf.reduce_mean(x_means_hot, axis=1)
else:
x_means_idx = tf.argmax(-dist, axis=-1)
x_means_hot = tf.one_hot(x_means_idx, depth=bottleneck_size)
x_means = tf.matmul(x_means_hot, means)
e_loss = tf.reduce_mean(tf.square(x - tf.stop_gradient(x_means)))
return x_means_hot, e_loss
示例15: fill_memory_slot
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import one_hot [as 別名]
def fill_memory_slot(memory, value, index):
"""Fills the memory slot at a particular index with the given value.
Args:
memory: a 4-d tensor [memory_size, batch, length, channel] containing
the state of all steps
value: a 3-d tensor [batch, length, channel] as the sate
index: integer in [0, memory_size)
Returns:
filled memory
"""
mask = tf.to_float(
tf.one_hot(index,
tf.shape(memory)[0])[:, None, None, None])
fill_memory = (1 - mask) * memory + mask * value[None, ...]
return fill_memory