當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.numpy_function方法代碼示例

本文整理匯總了Python中tensorflow.numpy_function方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.numpy_function方法的具體用法?Python tensorflow.numpy_function怎麽用?Python tensorflow.numpy_function使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.numpy_function方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: parse_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import numpy_function [as 別名]
def parse_fn(self, file):
        config = self.config
        image_size = config.IMAGE_SIZE
        dmap_size = config.MAP_SIZE
        label_size = 1

        def _parse_function(_file):
            _file = _file.decode('UTF-8')
            image_bytes = image_size * image_size * 3
            dmap_bytes = dmap_size * dmap_size
            bin = np.fromfile(_file, dtype='uint8')
            image = np.transpose(bin[0:image_bytes].reshape((3, image_size, image_size)) / 255, (1, 2, 0))
            dmap  = np.transpose(bin[image_bytes:image_bytes+dmap_bytes].reshape((1, dmap_size, dmap_size)) / 255, (1, 2, 0))
            label = bin[image_bytes+dmap_bytes:image_bytes+dmap_bytes+label_size] / 1
            dmap1 = dmap * (1-label)
            dmap2 = np.ones_like(dmap) * label
            dmap = np.concatenate([dmap1, dmap2], axis=2)

            return image.astype(np.float32), dmap.astype(np.float32), label.astype(np.float32)

        image_ts, dmap_ts, label_ts = tf.numpy_function(_parse_function, [file], [tf.float32, tf.float32, tf.float32])
        image_ts = tf.ensure_shape(image_ts, [config.IMAGE_SIZE, config.IMAGE_SIZE, 3])
        dmap_ts  = tf.ensure_shape(dmap_ts,  [config.MAP_SIZE, config.MAP_SIZE, 2])
        label_ts = tf.ensure_shape(label_ts, [1])
        return image_ts, dmap_ts, label_ts 
開發者ID:yaojieliu,項目名稱:CVPR2019-DeepTreeLearningForZeroShotFaceAntispoofing,代碼行數:27,代碼來源:dataset.py

示例2: update_metrics

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import numpy_function [as 別名]
def update_metrics(self, metrics, predictions, labels):
    weights = tf.sequence_mask(
        labels["length"], maxlen=tf.shape(labels["tags"])[1], dtype=tf.float32)

    metrics["accuracy"].update_state(
        labels["tags_id"], predictions["tags_id"], sample_weight=weights)

    if self.tagging_scheme in ("bioes",):
      flag_fn = None
      if self.tagging_scheme == "bioes":
        flag_fn = flag_bioes_tags

      gold_flags, predicted_flags = tf.numpy_function(
          flag_fn,
          [labels["tags"], predictions["tags"], labels["length"]],
          [tf.bool, tf.bool])

      metrics["f1"].update_state(gold_flags, predicted_flags) 
開發者ID:OpenNMT,項目名稱:OpenNMT-tf,代碼行數:20,代碼來源:sequence_tagger.py

示例3: simulate

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import numpy_function [as 別名]
def simulate(self, action):
        """Step the batch of environments.

    The results of the step can be accessed from the variables defined below.

    Args:
      action: Tensor holding the batch of actions to apply.

    Returns:
      Operation.
    """
        with tf.name_scope('environment/simulate'):
            if action.dtype in (tf.float16, tf.float32, tf.float64):
                action = tf.debugging.check_numerics(action, 'action')
            observ_dtype = self._parse_dtype(self._batch_env.observation_space)
            observ, reward, done = tf.numpy_function(lambda a: self._batch_env.step(a)[:3], [action],
                                                     [observ_dtype, tf.float32, tf.bool],
                                                     name='step')
            observ = tf.debugging.check_numerics(observ, 'observ')
            reward = tf.debugging.check_numerics(reward, 'reward')
            return tf.group(self._observ.assign(observ), self._action.assign(action),
                            self._reward.assign(reward), self._done.assign(done)) 
開發者ID:nicrusso7,項目名稱:rex-gym,代碼行數:24,代碼來源:in_graph_batch_env.py

示例4: reset

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import numpy_function [as 別名]
def reset(self, indices=None):
        """Reset the batch of environments.

    Args:
      indices: The batch indices of the environments to reset; defaults to all.

    Returns:
      Batch tensor of the new observations.
    """
        if indices is None:
            indices = tf.range(len(self._batch_env))
        observ_dtype = self._parse_dtype(self._batch_env.observation_space)
        observ = tf.numpy_function(self._batch_env.reset, [indices], observ_dtype, name='reset')
        observ = tf.debugging.check_numerics(observ, 'observ')
        reward = tf.zeros_like(indices, tf.float32)
        done = tf.zeros_like(indices, tf.bool)
        with tf.control_dependencies([
            tf.compat.v1.scatter_update(self._observ, indices, observ),
            tf.compat.v1.scatter_update(self._reward, indices, reward),
            tf.compat.v1.scatter_update(self._done, indices, done)
        ]):
            return tf.identity(observ) 
開發者ID:nicrusso7,項目名稱:rex-gym,代碼行數:24,代碼來源:in_graph_batch_env.py

示例5: _get_data

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import numpy_function [as 別名]
def _get_data(self, files):
        def _read_image(img_path):
            channels = 1 if self.read_gray else 3
            if 'all_jpeg' in self.config and self.config['all_jpeg']:
                img = tf.image.decode_jpeg(tf.io.read_file(img_path), channels=channels, dct_method='INTEGER_ACCURATE')
            else:
                img = tf.image.decode_image(tf.io.read_file(img_path), channels=channels)
            img.set_shape((None, None, channels))
            return tf.cast(img, tf.float32)

        def _read_dump(path):
            f = h5py.File(path, 'r')
            return (f['reg_feat'][()].astype(np.float32), f['loc_info'][()].astype(np.float32))

        def _read_gen_train(path):
            f = h5py.File(path, 'r')
            return (f['aug_feat'][()].astype(np.float32), 
                    f['loc_info'][()][:, 0:2].astype(np.float32),
                    f['loc_info'][()][:, 4].astype(np.float32))

        image_paths = tf.data.Dataset.from_tensor_slices(files['image_paths'])
        dump_paths = tf.data.Dataset.from_tensor_slices(files['dump_paths'])

        if self.config['stage'] == 'loc' or self.config['stage'] == 'reg':
            images = image_paths.map(_read_image)
            data = tf.data.Dataset.zip(
                {'image': images, 'dump_path': dump_paths, 'image_path': image_paths})
        elif self.config['stage'] == 'aug':
            dump_data = dump_paths.map(lambda path: tf.numpy_function(
                _read_dump, [path], [tf.float32, tf.float32]))
            data = tf.data.Dataset.zip({'dump_data': dump_data, 'dump_path': dump_paths})
        elif self.config['stage'] == 'post_format':
            dump_data = dump_paths.map(lambda path: tf.numpy_function(
                _read_gen_train, [path], [tf.float32, tf.float32, tf.float32]))
            data = tf.data.Dataset.zip(
                {'dump_data': dump_data, 'dump_path': dump_paths, 'image_path': image_paths})
        else:
            raise NotImplementedError
        return data 
開發者ID:luigifreda,項目名稱:pyslam,代碼行數:41,代碼來源:base_dataset.py

示例6: motion_blur

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import numpy_function [as 別名]
def motion_blur(image, max_kernel_size=10):

    def _py_motion_blur(img):
        # Either vertial, hozirontal or diagonal blur
        mode = np.random.choice(['h', 'v', 'diag_down', 'diag_up'])
        ksize = np.random.randint(0, (max_kernel_size+1)/2)*2 + 1  # make sure is odd
        center = int((ksize-1)/2)
        kernel = np.zeros((ksize, ksize))
        if mode == 'h':
            kernel[center, :] = 1.
        elif mode == 'v':
            kernel[:, center] = 1.
        elif mode == 'diag_down':
            kernel = np.eye(ksize)
        elif mode == 'diag_up':
            kernel = np.flip(np.eye(ksize), 0)
        var = ksize * ksize / 16.
        grid = np.repeat(np.arange(ksize)[:, np.newaxis], ksize, axis=-1)
        gaussian = np.exp(-(np.square(grid-center)+np.square(grid.T-center))/(2.*var))
        kernel *= gaussian
        kernel /= np.sum(kernel)
        img = cv.filter2D(img, -1, kernel)
        return img

    blurred = tf.numpy_function(_py_motion_blur, [image], tf.float32)
    return tf.reshape(blurred, tf.shape(image)) 
開發者ID:YoYo000,項目名稱:MVSNet,代碼行數:28,代碼來源:photometric_augmentation.py

示例7: gif_summary_v2

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import numpy_function [as 別名]
def gif_summary_v2(name, tensor, max_outputs, fps, family=None, step=None):

  def py_gif_event(step, tag, tensor, max_outputs, fps):
    summary = py_gif_summary(tag, tensor, max_outputs, fps)

    if isinstance(summary, bytes):
      summ = summary_pb2.Summary()
      summ.ParseFromString(summary)
      summary = summ

    event = event_pb2.Event(summary=summary)
    event.wall_time = time.time()
    event.step = step
    event_pb = event.SerializeToString()
    return event_pb

  def function(tag, scope):
    # Note the identity to move the tensor to the CPU.
    event = tf.numpy_function(
        py_gif_event,
        [_choose_step(step), tag, tf.identity(tensor), max_outputs, fps],
        tf.string)
    return summary_ops_v2.import_event(event, name=scope)

  return summary_ops_v2.summary_writer_function(
      name, tensor, function, family=family) 
開發者ID:alexlee-gk,項目名稱:slac,代碼行數:28,代碼來源:gif_utils.py

示例8: get_data

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import numpy_function [as 別名]
def get_data(self, data_list, batch_size=16, epoch=100, shuffle_buffer_size=1000):
        
        def read_and_preprocess_data(path_img, param):
            """Read image in path_img, resize it to patch_size,
            convert to grayscale and apply a random gamma grade to it

            Returns:
                input_data: stack of both original and graded image histograms
                param: groundtruth gamma value
            """
            if self.is_exr: # ['exr', 'EXR']
                img = tf.numpy_function(read_resize_exr,
                    [path_img, self.patch_size], [tf.float32])
                img = tf.numpy_function(linear_to_srgb, [img], [tf.float32])
                img = tf.reshape(img, [self.patch_size, self.patch_size, self.channels])
                img = tf.image.rgb_to_grayscale(img)
            else: # ['jpg', 'jpeg', 'png', 'bmp', 'JPG', 'JPEG', 'PNG', 'BMP']
                img_raw = tf.io.read_file(path_img)
                img_tensor = tf.image.decode_png(img_raw, channels=3)
                img = tf.cast(img_tensor, tf.float32) / 255.0
                img = tf.image.rgb_to_grayscale(img)
                img = tf.image.resize(img, [self.patch_size, self.patch_size])
            # Depending on what parameter(s) you want to learn, modify the training
            # input data. Here to learn gamma correction, our input data trainX is
            # a stack of both original and gamma-graded histograms.
            input_data = gamma_correction(img, param)
            return input_data, param

        with tf.compat.v1.variable_scope('input'):
            # Ensure preprocessing is done on the CPU (to let the GPU focus on training)
            with tf.device('/cpu:0'):
                data_tensor = tf.convert_to_tensor(data_list, dtype=tf.string)
                path_dataset = tf.data.Dataset.from_tensor_slices((data_tensor))
                path_dataset = path_dataset.shuffle(shuffle_buffer_size).repeat(epoch)
                # Depending on what parameter(s) you want to learn, modify the random
                # uniform range. Here create random gamma values between 0.2 and 5
                param_tensor = tf.random.uniform(
                    [len(data_list)*epoch, self.output_param_number], 0.2, 5.0)
                param_dataset = tf.data.Dataset.from_tensor_slices((param_tensor))
                dataset = tf.data.Dataset.zip((path_dataset, param_dataset))
                # Apply read_and_preprocess_data function to all input in the path_dataset
                dataset = dataset.map(read_and_preprocess_data, num_parallel_calls=4)
                dataset = dataset.batch(batch_size)
                # Always prefetch one batch and make sure there is always one ready
                dataset = dataset.prefetch(buffer_size=1)
                return dataset 
開發者ID:TheFoundryVisionmongers,項目名稱:nuke-ML-server,代碼行數:48,代碼來源:train_regression.py


注:本文中的tensorflow.numpy_function方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。