本文整理匯總了Python中tensorflow.numpy_function方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.numpy_function方法的具體用法?Python tensorflow.numpy_function怎麽用?Python tensorflow.numpy_function使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.numpy_function方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: parse_fn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import numpy_function [as 別名]
def parse_fn(self, file):
config = self.config
image_size = config.IMAGE_SIZE
dmap_size = config.MAP_SIZE
label_size = 1
def _parse_function(_file):
_file = _file.decode('UTF-8')
image_bytes = image_size * image_size * 3
dmap_bytes = dmap_size * dmap_size
bin = np.fromfile(_file, dtype='uint8')
image = np.transpose(bin[0:image_bytes].reshape((3, image_size, image_size)) / 255, (1, 2, 0))
dmap = np.transpose(bin[image_bytes:image_bytes+dmap_bytes].reshape((1, dmap_size, dmap_size)) / 255, (1, 2, 0))
label = bin[image_bytes+dmap_bytes:image_bytes+dmap_bytes+label_size] / 1
dmap1 = dmap * (1-label)
dmap2 = np.ones_like(dmap) * label
dmap = np.concatenate([dmap1, dmap2], axis=2)
return image.astype(np.float32), dmap.astype(np.float32), label.astype(np.float32)
image_ts, dmap_ts, label_ts = tf.numpy_function(_parse_function, [file], [tf.float32, tf.float32, tf.float32])
image_ts = tf.ensure_shape(image_ts, [config.IMAGE_SIZE, config.IMAGE_SIZE, 3])
dmap_ts = tf.ensure_shape(dmap_ts, [config.MAP_SIZE, config.MAP_SIZE, 2])
label_ts = tf.ensure_shape(label_ts, [1])
return image_ts, dmap_ts, label_ts
示例2: update_metrics
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import numpy_function [as 別名]
def update_metrics(self, metrics, predictions, labels):
weights = tf.sequence_mask(
labels["length"], maxlen=tf.shape(labels["tags"])[1], dtype=tf.float32)
metrics["accuracy"].update_state(
labels["tags_id"], predictions["tags_id"], sample_weight=weights)
if self.tagging_scheme in ("bioes",):
flag_fn = None
if self.tagging_scheme == "bioes":
flag_fn = flag_bioes_tags
gold_flags, predicted_flags = tf.numpy_function(
flag_fn,
[labels["tags"], predictions["tags"], labels["length"]],
[tf.bool, tf.bool])
metrics["f1"].update_state(gold_flags, predicted_flags)
示例3: simulate
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import numpy_function [as 別名]
def simulate(self, action):
"""Step the batch of environments.
The results of the step can be accessed from the variables defined below.
Args:
action: Tensor holding the batch of actions to apply.
Returns:
Operation.
"""
with tf.name_scope('environment/simulate'):
if action.dtype in (tf.float16, tf.float32, tf.float64):
action = tf.debugging.check_numerics(action, 'action')
observ_dtype = self._parse_dtype(self._batch_env.observation_space)
observ, reward, done = tf.numpy_function(lambda a: self._batch_env.step(a)[:3], [action],
[observ_dtype, tf.float32, tf.bool],
name='step')
observ = tf.debugging.check_numerics(observ, 'observ')
reward = tf.debugging.check_numerics(reward, 'reward')
return tf.group(self._observ.assign(observ), self._action.assign(action),
self._reward.assign(reward), self._done.assign(done))
示例4: reset
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import numpy_function [as 別名]
def reset(self, indices=None):
"""Reset the batch of environments.
Args:
indices: The batch indices of the environments to reset; defaults to all.
Returns:
Batch tensor of the new observations.
"""
if indices is None:
indices = tf.range(len(self._batch_env))
observ_dtype = self._parse_dtype(self._batch_env.observation_space)
observ = tf.numpy_function(self._batch_env.reset, [indices], observ_dtype, name='reset')
observ = tf.debugging.check_numerics(observ, 'observ')
reward = tf.zeros_like(indices, tf.float32)
done = tf.zeros_like(indices, tf.bool)
with tf.control_dependencies([
tf.compat.v1.scatter_update(self._observ, indices, observ),
tf.compat.v1.scatter_update(self._reward, indices, reward),
tf.compat.v1.scatter_update(self._done, indices, done)
]):
return tf.identity(observ)
示例5: _get_data
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import numpy_function [as 別名]
def _get_data(self, files):
def _read_image(img_path):
channels = 1 if self.read_gray else 3
if 'all_jpeg' in self.config and self.config['all_jpeg']:
img = tf.image.decode_jpeg(tf.io.read_file(img_path), channels=channels, dct_method='INTEGER_ACCURATE')
else:
img = tf.image.decode_image(tf.io.read_file(img_path), channels=channels)
img.set_shape((None, None, channels))
return tf.cast(img, tf.float32)
def _read_dump(path):
f = h5py.File(path, 'r')
return (f['reg_feat'][()].astype(np.float32), f['loc_info'][()].astype(np.float32))
def _read_gen_train(path):
f = h5py.File(path, 'r')
return (f['aug_feat'][()].astype(np.float32),
f['loc_info'][()][:, 0:2].astype(np.float32),
f['loc_info'][()][:, 4].astype(np.float32))
image_paths = tf.data.Dataset.from_tensor_slices(files['image_paths'])
dump_paths = tf.data.Dataset.from_tensor_slices(files['dump_paths'])
if self.config['stage'] == 'loc' or self.config['stage'] == 'reg':
images = image_paths.map(_read_image)
data = tf.data.Dataset.zip(
{'image': images, 'dump_path': dump_paths, 'image_path': image_paths})
elif self.config['stage'] == 'aug':
dump_data = dump_paths.map(lambda path: tf.numpy_function(
_read_dump, [path], [tf.float32, tf.float32]))
data = tf.data.Dataset.zip({'dump_data': dump_data, 'dump_path': dump_paths})
elif self.config['stage'] == 'post_format':
dump_data = dump_paths.map(lambda path: tf.numpy_function(
_read_gen_train, [path], [tf.float32, tf.float32, tf.float32]))
data = tf.data.Dataset.zip(
{'dump_data': dump_data, 'dump_path': dump_paths, 'image_path': image_paths})
else:
raise NotImplementedError
return data
示例6: motion_blur
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import numpy_function [as 別名]
def motion_blur(image, max_kernel_size=10):
def _py_motion_blur(img):
# Either vertial, hozirontal or diagonal blur
mode = np.random.choice(['h', 'v', 'diag_down', 'diag_up'])
ksize = np.random.randint(0, (max_kernel_size+1)/2)*2 + 1 # make sure is odd
center = int((ksize-1)/2)
kernel = np.zeros((ksize, ksize))
if mode == 'h':
kernel[center, :] = 1.
elif mode == 'v':
kernel[:, center] = 1.
elif mode == 'diag_down':
kernel = np.eye(ksize)
elif mode == 'diag_up':
kernel = np.flip(np.eye(ksize), 0)
var = ksize * ksize / 16.
grid = np.repeat(np.arange(ksize)[:, np.newaxis], ksize, axis=-1)
gaussian = np.exp(-(np.square(grid-center)+np.square(grid.T-center))/(2.*var))
kernel *= gaussian
kernel /= np.sum(kernel)
img = cv.filter2D(img, -1, kernel)
return img
blurred = tf.numpy_function(_py_motion_blur, [image], tf.float32)
return tf.reshape(blurred, tf.shape(image))
示例7: gif_summary_v2
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import numpy_function [as 別名]
def gif_summary_v2(name, tensor, max_outputs, fps, family=None, step=None):
def py_gif_event(step, tag, tensor, max_outputs, fps):
summary = py_gif_summary(tag, tensor, max_outputs, fps)
if isinstance(summary, bytes):
summ = summary_pb2.Summary()
summ.ParseFromString(summary)
summary = summ
event = event_pb2.Event(summary=summary)
event.wall_time = time.time()
event.step = step
event_pb = event.SerializeToString()
return event_pb
def function(tag, scope):
# Note the identity to move the tensor to the CPU.
event = tf.numpy_function(
py_gif_event,
[_choose_step(step), tag, tf.identity(tensor), max_outputs, fps],
tf.string)
return summary_ops_v2.import_event(event, name=scope)
return summary_ops_v2.summary_writer_function(
name, tensor, function, family=family)
示例8: get_data
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import numpy_function [as 別名]
def get_data(self, data_list, batch_size=16, epoch=100, shuffle_buffer_size=1000):
def read_and_preprocess_data(path_img, param):
"""Read image in path_img, resize it to patch_size,
convert to grayscale and apply a random gamma grade to it
Returns:
input_data: stack of both original and graded image histograms
param: groundtruth gamma value
"""
if self.is_exr: # ['exr', 'EXR']
img = tf.numpy_function(read_resize_exr,
[path_img, self.patch_size], [tf.float32])
img = tf.numpy_function(linear_to_srgb, [img], [tf.float32])
img = tf.reshape(img, [self.patch_size, self.patch_size, self.channels])
img = tf.image.rgb_to_grayscale(img)
else: # ['jpg', 'jpeg', 'png', 'bmp', 'JPG', 'JPEG', 'PNG', 'BMP']
img_raw = tf.io.read_file(path_img)
img_tensor = tf.image.decode_png(img_raw, channels=3)
img = tf.cast(img_tensor, tf.float32) / 255.0
img = tf.image.rgb_to_grayscale(img)
img = tf.image.resize(img, [self.patch_size, self.patch_size])
# Depending on what parameter(s) you want to learn, modify the training
# input data. Here to learn gamma correction, our input data trainX is
# a stack of both original and gamma-graded histograms.
input_data = gamma_correction(img, param)
return input_data, param
with tf.compat.v1.variable_scope('input'):
# Ensure preprocessing is done on the CPU (to let the GPU focus on training)
with tf.device('/cpu:0'):
data_tensor = tf.convert_to_tensor(data_list, dtype=tf.string)
path_dataset = tf.data.Dataset.from_tensor_slices((data_tensor))
path_dataset = path_dataset.shuffle(shuffle_buffer_size).repeat(epoch)
# Depending on what parameter(s) you want to learn, modify the random
# uniform range. Here create random gamma values between 0.2 and 5
param_tensor = tf.random.uniform(
[len(data_list)*epoch, self.output_param_number], 0.2, 5.0)
param_dataset = tf.data.Dataset.from_tensor_slices((param_tensor))
dataset = tf.data.Dataset.zip((path_dataset, param_dataset))
# Apply read_and_preprocess_data function to all input in the path_dataset
dataset = dataset.map(read_and_preprocess_data, num_parallel_calls=4)
dataset = dataset.batch(batch_size)
# Always prefetch one batch and make sure there is always one ready
dataset = dataset.prefetch(buffer_size=1)
return dataset