本文整理匯總了Python中tensorflow.not_equal方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.not_equal方法的具體用法?Python tensorflow.not_equal怎麽用?Python tensorflow.not_equal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.not_equal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: bottom_simple
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import not_equal [as 別名]
def bottom_simple(self, x, name, reuse):
with tf.variable_scope(name, reuse=reuse):
# Ensure the inputs are 3-D
if len(x.get_shape()) == 4:
x = tf.squeeze(x, axis=3)
while len(x.get_shape()) < 3:
x = tf.expand_dims(x, axis=-1)
var = self._get_weights()
x = common_layers.dropout_no_scaling(
x, 1.0 - self._model_hparams.symbol_dropout)
ret = common_layers.gather(var, x)
if self._model_hparams.multiply_embedding_mode == "sqrt_depth":
ret *= self._body_input_depth**0.5
ret *= tf.expand_dims(tf.to_float(tf.not_equal(x, 0)), -1)
return ret
示例2: attention_bias_same_segment
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import not_equal [as 別名]
def attention_bias_same_segment(query_segment_id, memory_segment_id):
"""Create an bias tensor to be added to attention logits.
Positions with the same segment_ids can see each other.
Args:
query_segment_id: a float `Tensor` with shape [batch, query_length].
memory_segment_id: a float `Tensor` with shape [batch, memory_length].
Returns:
a `Tensor` with shape [batch, 1, query_length, memory_length].
"""
ret = tf.to_float(
tf.not_equal(
tf.expand_dims(query_segment_id, 2),
tf.expand_dims(memory_segment_id, 1))) * -1e9
return tf.expand_dims(ret, axis=1)
示例3: _create_metrics_for_keras_eval_model
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import not_equal [as 別名]
def _create_metrics_for_keras_eval_model(self) -> Dict[str, List[Union[Callable, keras.metrics.Metric]]]:
top_k_acc_metrics = []
for k in range(1, self.config.TOP_K_WORDS_CONSIDERED_DURING_PREDICTION + 1):
top_k_acc_metric = partial(
sparse_top_k_categorical_accuracy, k=k)
top_k_acc_metric.__name__ = 'top{k}_acc'.format(k=k)
top_k_acc_metrics.append(top_k_acc_metric)
predicted_words_filters = [
lambda word_strings: tf.not_equal(word_strings, self.vocabs.target_vocab.special_words.OOV),
lambda word_strings: tf.strings.regex_full_match(word_strings, r'^[a-zA-Z\|]+$')
]
words_subtokens_metrics = [
WordsSubtokenPrecisionMetric(predicted_words_filters=predicted_words_filters, name='subtoken_precision'),
WordsSubtokenRecallMetric(predicted_words_filters=predicted_words_filters, name='subtoken_recall'),
WordsSubtokenF1Metric(predicted_words_filters=predicted_words_filters, name='subtoken_f1')
]
return {'target_index': top_k_acc_metrics, 'target_string': words_subtokens_metrics}
示例4: _filter_input_rows
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import not_equal [as 別名]
def _filter_input_rows(self, *row_parts) -> tf.bool:
row_parts = self.model_input_tensors_former.from_model_input_form(row_parts)
#assert all(tensor.shape == (self.config.MAX_CONTEXTS,) for tensor in
# {row_parts.path_source_token_indices, row_parts.path_indices,
# row_parts.path_target_token_indices, row_parts.context_valid_mask})
# FIXME: Does "valid" here mean just "no padding" or "neither padding nor OOV"? I assumed just "no padding".
any_word_valid_mask_per_context_part = [
tf.not_equal(tf.reduce_max(row_parts.path_source_token_indices, axis=0),
self.vocabs.token_vocab.word_to_index[self.vocabs.token_vocab.special_words.PAD]),
tf.not_equal(tf.reduce_max(row_parts.path_target_token_indices, axis=0),
self.vocabs.token_vocab.word_to_index[self.vocabs.token_vocab.special_words.PAD]),
tf.not_equal(tf.reduce_max(row_parts.path_indices, axis=0),
self.vocabs.path_vocab.word_to_index[self.vocabs.path_vocab.special_words.PAD])]
any_contexts_is_valid = reduce(tf.logical_or, any_word_valid_mask_per_context_part) # scalar
if self.estimator_action.is_evaluate:
cond = any_contexts_is_valid # scalar
else: # training
word_is_valid = tf.greater(
row_parts.target_index, self.vocabs.target_vocab.word_to_index[self.vocabs.target_vocab.special_words.OOV]) # scalar
cond = tf.logical_and(word_is_valid, any_contexts_is_valid) # scalar
return cond # scalar
示例5: magic_correction_term
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import not_equal [as 別名]
def magic_correction_term(y_true):
"""
Calculate a correction term to prevent the loss being lowered by magic_num
:param y_true: Ground Truth
:type y_true: tf.Tensor
:return: Correction Term
:rtype: tf.Tensor
:History:
| 2018-Jan-30 - Written - Henry Leung (University of Toronto)
| 2018-Feb-17 - Updated - Henry Leung (University of Toronto)
"""
import tensorflow as tf
from astroNN.config import MAGIC_NUMBER
num_nonmagic = tf.reduce_sum(tf.cast(tf.not_equal(y_true, MAGIC_NUMBER), tf.float32), axis=-1)
num_magic = tf.reduce_sum(tf.cast(tf.equal(y_true, MAGIC_NUMBER), tf.float32), axis=-1)
# If no magic number, then num_zero=0 and whole expression is just 1 and get back our good old loss
# If num_nonzero is 0, that means we don't have any information, then set the correction term to ones
return (num_nonmagic + num_magic) / num_nonmagic
示例6: multiple_content_lookup
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import not_equal [as 別名]
def multiple_content_lookup(content, vocab_table, ids, name=None):
"""
:param content:
:param vocab_table:
:param ids:
:param name:
:return: 2-D [batch_size, max_length_in_batch] content id matrix,
1-D [batch_size] content len vector
"""
with tf.name_scope(name, 'multiple_content_lookup', [content, vocab_table, ids]):
content_list = tf.nn.embedding_lookup(content, ids)
extracted_sparse_content = tf.string_split(content_list, delimiter=' ')
sparse_content = tf.SparseTensor(indices=extracted_sparse_content.indices,
values=vocab_table.lookup(extracted_sparse_content.values),
dense_shape=extracted_sparse_content.dense_shape)
extracted_content_ids = tf.sparse_tensor_to_dense(sparse_content,
default_value=0, name='dense_content')
extracted_content_len = tf.reduce_sum(tf.cast(tf.not_equal(extracted_content_ids, 0), tf.int32), axis=-1)
return extracted_content_ids, extracted_content_len
示例7: _common
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import not_equal [as 別名]
def _common(cls, node, **kwargs):
attrs = copy.deepcopy(node.attrs)
tensor_dict = kwargs["tensor_dict"]
x = tensor_dict[node.inputs[0]]
condition = tensor_dict[node.inputs[1]]
x = tf.reshape(x, [-1]) if node.attrs.get("axis") is None else x
if condition.shape.is_fully_defined():
condition_shape = condition.shape[0]
indices = tf.constant(list(range(condition_shape)), dtype=tf.int64)
else:
condition_shape = tf.shape(condition, out_type=tf.int64)[0]
indices = tf.range(condition_shape, dtype=tf.int64)
not_zero = tf.not_equal(condition, tf.zeros_like(condition))
attrs['indices'] = tf.boolean_mask(indices, not_zero)
return [
cls.make_tensor_from_onnx_node(node, inputs=[x], attrs=attrs, **kwargs)
]
示例8: summarize_features
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import not_equal [as 別名]
def summarize_features(features, num_shards=1):
"""Generate summaries for features."""
if not common_layers.should_generate_summaries():
return
with tf.name_scope("input_stats"):
for (k, v) in sorted(six.iteritems(features)):
if (isinstance(v, tf.Tensor) and (v.get_shape().ndims > 1) and
(v.dtype != tf.string)):
tf.summary.scalar("%s_batch" % k, tf.shape(v)[0] // num_shards)
tf.summary.scalar("%s_length" % k, tf.shape(v)[1])
nonpadding = tf.to_float(tf.not_equal(v, 0))
nonpadding_tokens = tf.reduce_sum(nonpadding)
tf.summary.scalar("%s_nonpadding_tokens" % k, nonpadding_tokens)
tf.summary.scalar("%s_nonpadding_fraction" % k,
tf.reduce_mean(nonpadding))
示例9: weights_multi_problem
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import not_equal [as 別名]
def weights_multi_problem(labels, taskid=-1):
"""Assign weight 1.0 to only the "targets" portion of the labels.
Weight 1.0 is assigned to all labels past the taskid.
Args:
labels: A Tensor of int32s.
taskid: an int32 representing the task id for a problem.
Returns:
A Tensor of floats.
Raises:
ValueError: The Task ID must be valid.
"""
taskid = check_nonnegative(taskid)
past_taskid = tf.cumsum(to_float(tf.equal(labels, taskid)), axis=1)
# Additionally zero out the task id location
past_taskid *= to_float(tf.not_equal(labels, taskid))
non_taskid = to_float(labels)
return to_float(tf.not_equal(past_taskid * non_taskid, 0))
示例10: focal_loss_
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import not_equal [as 別名]
def focal_loss_(labels, pred, anchor_state, alpha=0.25, gamma=2.0):
# filter out "ignore" anchors
indices = tf.reshape(tf.where(tf.not_equal(anchor_state, -1)), [-1, ])
labels = tf.gather(labels, indices)
pred = tf.gather(pred, indices)
logits = tf.cast(pred, tf.float32)
onehot_labels = tf.cast(labels, tf.float32)
ce = tf.nn.sigmoid_cross_entropy_with_logits(labels=onehot_labels, logits=logits)
predictions = tf.sigmoid(logits)
predictions_pt = tf.where(tf.equal(onehot_labels, 1), predictions, 1.-predictions)
alpha_t = tf.scalar_mul(alpha, tf.ones_like(onehot_labels, dtype=tf.float32))
alpha_t = tf.where(tf.equal(onehot_labels, 1.0), alpha_t, 1-alpha_t)
loss = ce * tf.pow(1-predictions_pt, gamma) * alpha_t
positive_mask = tf.cast(tf.greater(labels, 0), tf.float32)
return tf.reduce_sum(loss) / tf.maximum(tf.reduce_sum(positive_mask), 1)
示例11: flatten_binary_scores
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import not_equal [as 別名]
def flatten_binary_scores(scores, labels, ignore=None):
"""
Flattens predictions in the batch (binary case)
Remove labels equal to 'ignore'
"""
scores = tf.reshape(scores, (-1,))
labels = tf.reshape(labels, (-1,))
if ignore is None:
return scores, labels
valid = tf.not_equal(labels, ignore)
vscores = tf.boolean_mask(scores, valid, name='valid_scores')
vlabels = tf.boolean_mask(labels, valid, name='valid_labels')
return vscores, vlabels
# --------------------------- MULTICLASS LOSSES ---------------------------
示例12: flatten_probas
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import not_equal [as 別名]
def flatten_probas(probas, labels, ignore=None, order='BHWC'):
"""
Flattens predictions in the batch
"""
if len(probas.shape) == 3:
probas, order = tf.expand_dims(probas, 3), 'BHWC'
if order == 'BCHW':
probas = tf.transpose(probas, (0, 2, 3, 1), name="BCHW_to_BHWC")
order = 'BHWC'
if order != 'BHWC':
raise NotImplementedError('Order {} unknown'.format(order))
C = probas.shape[3]
probas = tf.reshape(probas, (-1, C))
labels = tf.reshape(labels, (-1,))
if ignore is None:
return probas, labels
valid = tf.not_equal(labels, ignore)
vprobas = tf.boolean_mask(probas, valid, name='valid_probas')
vlabels = tf.boolean_mask(labels, valid, name='valid_labels')
return vprobas, vlabels
示例13: _create_loss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import not_equal [as 別名]
def _create_loss(self, loss_str, fraction, logits, targets):
raw_ce = None
n_valid_pixels_per_im = None
if "ce" in loss_str:
# we need to replace the void label to avoid nan
no_void_label_mask = tf.not_equal(targets, VOID_LABEL)
targets_no_void = tf.where(no_void_label_mask, targets, tf.zeros_like(targets))
raw_ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=targets_no_void, name="ce")
# set the loss to 0 for the void label pixels
raw_ce *= tf.cast(no_void_label_mask, tf.float32)
n_valid_pixels_per_im = tf.reduce_sum(tf.cast(no_void_label_mask, tf.int32), axis=[1, 2])
if loss_str == "ce":
ce_per_im = tf.reduce_sum(raw_ce, axis=[1, 2])
ce_per_im /= tf.cast(tf.maximum(n_valid_pixels_per_im, 1), tf.float32)
ce_total = tf.reduce_mean(ce_per_im, axis=0)
loss = ce_total
elif loss_str == "bootstrapped_ce":
loss = bootstrapped_ce_loss(raw_ce, fraction, n_valid_pixels_per_im)
elif loss_str == "class_balanced_ce":
loss = class_balanced_ce_loss(raw_ce, targets, self.n_classes)
else:
assert False, ("unknown loss", loss_str)
return loss
示例14: _rpn_box_loss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import not_equal [as 別名]
def _rpn_box_loss(box_outputs, box_targets, normalizer=1.0, delta=1./9):
"""Computes box regression loss."""
# delta is typically around the mean value of regression target.
# for instances, the regression targets of 512x512 input with 6 anchors on
# P2-P6 pyramid is about [0.1, 0.1, 0.2, 0.2].
with tf.name_scope('rpn_box_loss'):
mask = tf.not_equal(box_targets, 0.0)
# The loss is normalized by the sum of non-zero weights before additional
# normalizer provided by the function caller.
box_loss = tf.losses.huber_loss(
box_targets,
box_outputs,
weights=mask,
delta=delta,
reduction=tf.losses.Reduction.SUM_BY_NONZERO_WEIGHTS)
box_loss /= normalizer
return box_loss
示例15: char_accuracy
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import not_equal [as 別名]
def char_accuracy(predictions, targets, rej_char, streaming=False):
"""Computes character level accuracy.
Both predictions and targets should have the same shape
[batch_size x seq_length].
Args:
predictions: predicted characters ids.
targets: ground truth character ids.
rej_char: the character id used to mark an empty element (end of sequence).
streaming: if True, uses the streaming mean from the slim.metric module.
Returns:
a update_ops for execution and value tensor whose value on evaluation
returns the total character accuracy.
"""
with tf.variable_scope('CharAccuracy'):
predictions.get_shape().assert_is_compatible_with(targets.get_shape())
targets = tf.to_int32(targets)
const_rej_char = tf.constant(rej_char, shape=targets.get_shape())
weights = tf.to_float(tf.not_equal(targets, const_rej_char))
correct_chars = tf.to_float(tf.equal(predictions, targets))
accuracy_per_example = tf.div(
tf.reduce_sum(tf.multiply(correct_chars, weights), 1),
tf.reduce_sum(weights, 1))
if streaming:
return tf.contrib.metrics.streaming_mean(accuracy_per_example)
else:
return tf.reduce_mean(accuracy_per_example)