當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.no_op方法代碼示例

本文整理匯總了Python中tensorflow.no_op方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.no_op方法的具體用法?Python tensorflow.no_op怎麽用?Python tensorflow.no_op使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.no_op方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import no_op [as 別名]
def __init__(self, optimizer, layer_size, num_layers, learn_mixture_weights, seed):
        """Initializes a `_DNNBuilder`.

        Args:
          optimizer: An `Optimizer` instance for training both the subnetwork and
            the mixture weights.
          layer_size: The number of nodes to output at each hidden layer.
          num_layers: The number of hidden layers.
          learn_mixture_weights: Whether to solve a learning problem to find the
            best mixture weights, or use their default value according to the
            mixture weight type. When `False`, the subnetworks will return a no_op
            for the mixture weight train op.
          seed: A random seed.

        Returns:
          An instance of `_SimpleDNNBuilder`.
        """
        self._optimizer = optimizer
        self._layer_size = layer_size
        self._num_layers = num_layers
        self._learn_mixture_weights = learn_mixture_weights
        self._seed = seed 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:24,代碼來源:1_simple_boston.py

示例2: testPS

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import no_op [as 別名]
def testPS(self):
    deploy_config = model_deploy.DeploymentConfig(num_clones=1, num_ps_tasks=1)

    self.assertDeviceEqual(deploy_config.clone_device(0),
                           '/job:worker/device:GPU:0')
    self.assertEqual(deploy_config.clone_scope(0), '')
    self.assertDeviceEqual(deploy_config.optimizer_device(),
                           '/job:worker/device:CPU:0')
    self.assertDeviceEqual(deploy_config.inputs_device(),
                           '/job:worker/device:CPU:0')
    with tf.device(deploy_config.variables_device()):
      a = tf.Variable(0)
      b = tf.Variable(0)
      c = tf.no_op()
      d = slim.variable('a', [],
                        caching_device=deploy_config.caching_device())
    self.assertDeviceEqual(a.device, '/job:ps/task:0/device:CPU:0')
    self.assertDeviceEqual(a.device, a.value().device)
    self.assertDeviceEqual(b.device, '/job:ps/task:0/device:CPU:0')
    self.assertDeviceEqual(b.device, b.value().device)
    self.assertDeviceEqual(c.device, '')
    self.assertDeviceEqual(d.device, '/job:ps/task:0/device:CPU:0')
    self.assertDeviceEqual(d.value().device, '') 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:25,代碼來源:model_deploy_test.py

示例3: testVariablesPS

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import no_op [as 別名]
def testVariablesPS(self):
    deploy_config = model_deploy.DeploymentConfig(num_ps_tasks=2)

    with tf.device(deploy_config.variables_device()):
      a = tf.Variable(0)
      b = tf.Variable(0)
      c = tf.no_op()
      d = slim.variable('a', [],
                        caching_device=deploy_config.caching_device())

    self.assertDeviceEqual(a.device, '/job:ps/task:0/device:CPU:0')
    self.assertDeviceEqual(a.device, a.value().device)
    self.assertDeviceEqual(b.device, '/job:ps/task:1/device:CPU:0')
    self.assertDeviceEqual(b.device, b.value().device)
    self.assertDeviceEqual(c.device, '')
    self.assertDeviceEqual(d.device, '/job:ps/task:0/device:CPU:0')
    self.assertDeviceEqual(d.value().device, '') 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:model_deploy_test.py

示例4: begin_episode

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import no_op [as 別名]
def begin_episode(self, agent_indices):
    """Reset the recurrent states and stored episode.

    Args:
      agent_indices: Tensor containing current batch indices.

    Returns:
      Summary tensor.
    """
    with tf.name_scope('begin_episode/'):
      if self._last_state is None:
        reset_state = tf.no_op()
      else:
        reset_state = utility.reinit_nested_vars(
            self._last_state, agent_indices)
      reset_buffer = self._episodes.clear(agent_indices)
      with tf.control_dependencies([reset_state, reset_buffer]):
        return tf.constant('') 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:20,代碼來源:algorithm.py

示例5: weight_noise

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import no_op [as 別名]
def weight_noise(noise_rate, learning_rate, var_list):
  """Apply weight noise to vars in var_list."""
  if not noise_rate:
    return [tf.no_op()]

  tf.logging.info("Applying weight noise scaled by learning rate, "
                  "noise_rate: %0.5f", noise_rate)

  noise_ops = []

  for v in var_list:
    with tf.device(v._ref().device):  # pylint: disable=protected-access
      scale = noise_rate * learning_rate * 0.001
      tf.summary.scalar("weight_noise_scale", scale)
      noise = tf.truncated_normal(v.shape) * scale
      noise_op = v.assign_add(noise)
      noise_ops.append(noise_op)

  return noise_ops 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:21,代碼來源:optimize.py

示例6: _finish

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import no_op [as 別名]
def _finish(self, update_ops, name_scope):
    """Updates beta_power variables every n batches and incrs counter."""
    iter_ = self._get_iter_variable()
    beta1_power, beta2_power = self._get_beta_accumulators()
    with tf.control_dependencies(update_ops):
      with tf.colocate_with(iter_):

        def update_beta_op():
          update_beta1 = beta1_power.assign(
              beta1_power * self._beta1_t,
              use_locking=self._use_locking)
          update_beta2 = beta2_power.assign(
              beta2_power * self._beta2_t,
              use_locking=self._use_locking)
          return tf.group(update_beta1, update_beta2)
        maybe_update_beta = tf.cond(
            tf.equal(iter_, 0), update_beta_op, tf.no_op)
        with tf.control_dependencies([maybe_update_beta]):
          update_iter = iter_.assign(tf.mod(iter_ + 1, self._n_t),
                                     use_locking=self._use_locking)
    return tf.group(
        *update_ops + [update_iter, maybe_update_beta], name=name_scope) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:24,代碼來源:multistep_optimizer.py

示例7: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import no_op [as 別名]
def __init__(self, ckpt_dir, **kwargs_saver):
        """
        :param ckpt_dir: where to save data
        :param kwargs_saver: Passed on to the tf.train.Saver that will be created
        """
        os.makedirs(ckpt_dir, exist_ok=True)
        self.ckpt_dir = ckpt_dir
        self.ckpt_base_file_path = path.join(ckpt_dir, _CKPT_FN)

        all_saveable_vars = tf_helpers.all_saveable_objects()
        var_list = kwargs_saver.get('var_list', all_saveable_vars)
        var_names = VarNames(ckpt_dir)
        if not var_names.exists():
            print('Saver for {} saves {} variables...'.format(self.ckpt_dir, len(var_list)))
            var_names.write([v.name for v in var_list])

        unrestored_vars = [v for v in all_saveable_vars if v not in var_list]
        if unrestored_vars:
            print('Found {} unrestored variables'.format(len(unrestored_vars)))

        self.init_unrestored_op = (tf.variables_initializer(unrestored_vars)
                                   if unrestored_vars else tf.no_op())

        self.saver = tf.train.Saver(**kwargs_saver) 
開發者ID:fab-jul,項目名稱:imgcomp-cvpr,代碼行數:26,代碼來源:saver.py

示例8: variable_synchronizer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import no_op [as 別名]
def variable_synchronizer(comm, vars, *, limit=1<<28):
    """Synchronize `vars` from the root to other processs"""
    if comm.Get_size() == 1:
        return tf.no_op()

    # Split vars into chunks so that no chunk is over limit bytes
    batches = chunk_tensors(sorted(vars, key=lambda v: v.name), limit=limit)

    # Synchronize each batch, using a separate communicator to ensure safety
    prev = tf.no_op()
    for batch in batches:
        with tf.control_dependencies([prev]):
            assigns = []
            values = map_flat_bits(partial(mpi_bcast, comm), batch)
            for var, value in zip(batch, values):
                assigns.append(var.assign(value))
            prev = tf.group(*assigns)
    return prev 
開發者ID:openai,項目名稱:lm-human-preferences,代碼行數:20,代碼來源:core.py

示例9: apply_gradients

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import no_op [as 別名]
def apply_gradients(self, grads_and_vars, global_step=None, name=None):
    ws = [v for _,v in grads_and_vars]
    grads = [g for g,_ in grads_and_vars]
    self._prepare()

    jac_vec = self.fwd_gradients(grads,ws, grad_xs=grads,stop_gradients=ws)
    jac_vec = [tf.zeros_like(x) if dydx is None else dydx for x,dydx in zip(ws,jac_vec)]
    jac_tran_vec = tf.gradients(grads, ws, grad_ys=grads, stop_gradients=ws)
    jac_tran_vec = [tf.zeros_like(x) if dydx is None else dydx for x,dydx in zip(ws,jac_tran_vec)]
    at_xi = [(ht-h)*0.5 for (h,ht) in zip(jac_vec, jac_tran_vec)]


    if self.config.minus:
        new_grads = [g-a for g,a in zip(grads, at_xi)]
    else:
        new_grads = [g+a for g,a in zip(grads, at_xi)]
    grads_and_vars2 = zip(new_grads, ws)
    op8 = self.optimizer.apply_gradients(list(grads_and_vars2).copy(), global_step=global_step, name=name)
    with tf.get_default_graph().control_dependencies([op8]):
        return tf.no_op() 
開發者ID:HyperGAN,項目名稱:HyperGAN,代碼行數:22,代碼來源:sga_optimizer.py

示例10: _get_data

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import no_op [as 別名]
def _get_data(dataset, batch_size=None, num_epochs=None, num_readers=1):
    """ Get the subset of the passed in dataset from the directory indicated """
    if batch_size is None:
        raise ValueError('batch_size must not specified')

    data_provider = slim.dataset_data_provider.DatasetDataProvider(
        dataset, num_readers=num_readers, num_epochs=num_epochs,
        common_queue_capacity=20 * batch_size, common_queue_min=10 * batch_size)

    [image] = data_provider.get(['image'])
    image = preprocess_image(image)

    return tf.no_op(), {}, image


# pylint: disable=unused-argument 
開發者ID:dojoteef,項目名稱:glas,代碼行數:18,代碼來源:inputs.py

示例11: _graph_fn_get_should_sync

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import no_op [as 別名]
def _graph_fn_get_should_sync(self):
        if get_backend() == "tf":
            inc_op = tf.assign_add(self.steps_since_last_sync, 1)
            should_sync = inc_op >= self.q_sync_spec.sync_interval

            def reset_op():
                op = tf.assign(self.steps_since_last_sync, 0)
                with tf.control_dependencies([op]):
                    return tf.no_op()

            sync_op = tf.cond(
                pred=inc_op >= self.q_sync_spec.sync_interval,
                true_fn=reset_op,
                false_fn=tf.no_op
            )
            with tf.control_dependencies([sync_op]):
                return tf.identity(should_sync)
        else:
            raise NotImplementedError("TODO") 
開發者ID:rlgraph,項目名稱:rlgraph,代碼行數:21,代碼來源:sac_agent.py

示例12: _graph_fn_sync

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import no_op [as 別名]
def _graph_fn_sync(self, should_sync):
        assign_ops = []
        tau = self.q_sync_spec.sync_tau
        if tau != 1.0:
            all_source_vars = [source.get_variables(collections=None, custom_scope_separator="-") for source in self._q_functions]
            all_dest_vars = [destination.get_variables(collections=None, custom_scope_separator="-") for destination in self._target_q_functions]
            for source_vars, dest_vars in zip(all_source_vars, all_dest_vars):
                for (source_key, source_var), (dest_key, dest_var) in zip(sorted(source_vars.items()), sorted(dest_vars.items())):
                    assign_ops.append(tf.assign(dest_var, tau * source_var + (1.0 - tau) * dest_var))
        else:
            all_source_vars = [source.variables() for source in self._q_functions]
            for source_vars, destination in zip(all_source_vars, self._target_q_functions):
                assign_ops.append(destination.sync(source_vars))
        assert len(assign_ops) > 0
        grouped_op = tf.group(assign_ops)

        def assign_op():
            # Make sure we are returning no_op as opposed to reference
            with tf.control_dependencies([grouped_op]):
                return tf.no_op()

        cond_assign_op = tf.cond(should_sync, true_fn=assign_op, false_fn=tf.no_op)
        with tf.control_dependencies([cond_assign_op]):
            return tf.no_op() 
開發者ID:rlgraph,項目名稱:rlgraph,代碼行數:26,代碼來源:sac_agent.py

示例13: _graph_fn_kl_divergence

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import no_op [as 別名]
def _graph_fn_kl_divergence(self, distribution, distribution_b):
        """
        Kullback-Leibler divergence between two distribution objects.

        Args:
            distribution (tf.Distribution): The (already parameterized) backend-specific distribution 1.
            distribution_b (tf.Distribution): The other distribution object.

        Returns:
            DataOp: (batch-wise) KL-divergence between the two distributions.
        """
        if get_backend() == "tf":
            return tf.no_op()
            # TODO: never tested. tf throws error: NotImplementedError: No KL(distribution_a || distribution_b) registered for distribution_a type Bernoulli and distribution_b type ndarray
            #return tf.distributions.kl_divergence(
            #    distribution_a=distribution_a,
            #    distribution_b=distribution_b,
            #    allow_nan_stats=True,
            #    name=None
            #) 
開發者ID:rlgraph,項目名稱:rlgraph,代碼行數:22,代碼來源:distribution.py

示例14: build_mixture_weights_train_op

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import no_op [as 別名]
def build_mixture_weights_train_op(self, loss, var_list, logits, labels,
                                       iteration_step, summary):
        """See `adanet.subnetwork.Builder`."""
        if not self._learn_mixture_weights:
            return tf.no_op()
        return self._optimizer.minimize(loss=loss, var_list=var_list) 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:8,代碼來源:1_simple_boston.py

示例15: build_mixture_weights_train_op

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import no_op [as 別名]
def build_mixture_weights_train_op(self, loss, var_list, logits, labels,
                                       iteration_step, summary):
        """See `adanet.subnetwork.Builder`."""
        return tf.no_op("mixture_weights_train_op") 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:6,代碼來源:2_simple_mnist.py


注:本文中的tensorflow.no_op方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。