本文整理匯總了Python中tensorflow.newaxis方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.newaxis方法的具體用法?Python tensorflow.newaxis怎麽用?Python tensorflow.newaxis使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.newaxis方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _top_k_logits
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import newaxis [as 別名]
def _top_k_logits(logits, k):
"""Adapted from
https://github.com/openai/gpt-2/blob/master/src/sample.py#L63-L77
"""
if k == 0:
# no truncation
return logits
def _top_k():
values, _ = tf.nn.top_k(logits, k=k)
min_values = values[:, -1, tf.newaxis]
return tf.where(
logits < min_values,
tf.ones_like(logits, dtype=logits.dtype) * -1e10,
logits,
)
return tf.cond(
tf.equal(k, 0),
lambda: logits,
lambda: _top_k(),
)
示例2: take_top_p_logits
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import newaxis [as 別名]
def take_top_p_logits(logits, p):
"""Nucleus sampling"""
batch, sequence, _ = logits.shape.as_list()
sorted_logits = tf.sort(logits, direction='DESCENDING', axis=-1)
cumulative_probs = tf.cumsum(tf.nn.softmax(sorted_logits, axis=-1), axis=-1)
indices = tf.stack([
tf.range(0, batch)[:, tf.newaxis],
tf.range(0, sequence)[tf.newaxis, :],
# number of indices to include
tf.maximum(tf.reduce_sum(tf.cast(cumulative_probs <= p, tf.int32), axis=-1) - 1, 0),
], axis=-1)
min_values = tf.gather_nd(sorted_logits, indices)
return tf.where(
logits < min_values,
tf.ones_like(logits) * -1e10,
logits,
)
示例3: _add_jittered_boxes
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import newaxis [as 別名]
def _add_jittered_boxes(rois, scores, batch_inds, gt_boxes, jitter=0.1):
ws = gt_boxes[:, 2] - gt_boxes[:, 0]
hs = gt_boxes[:, 3] - gt_boxes[:, 1]
shape = tf.shape(gt_boxes)[0]
jitter = tf.random_uniform([shape, 1], minval = -jitter, maxval = jitter)
jitter = tf.reshape(jitter, [-1])
ws_offset = ws * jitter
hs_offset = hs * jitter
x1s = gt_boxes[:, 0] + ws_offset
x2s = gt_boxes[:, 2] + ws_offset
y1s = gt_boxes[:, 1] + hs_offset
y2s = gt_boxes[:, 3] + hs_offset
boxes = tf.concat(
values=[
x1s[:, tf.newaxis],
y1s[:, tf.newaxis],
x2s[:, tf.newaxis],
y2s[:, tf.newaxis]],
axis=1)
new_scores = tf.ones([shape], tf.float32)
new_batch_inds = tf.zeros([shape], tf.int32)
return tf.concat(values=[rois, boxes], axis=0), \
tf.concat(values=[scores, new_scores], axis=0), \
tf.concat(values=[batch_inds, new_batch_inds], axis=0)
示例4: top_k_logits
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import newaxis [as 別名]
def top_k_logits(logits, k):
if k == 0:
# no truncation
return logits
def _top_k():
values, _ = tf.nn.top_k(logits, k=k)
min_values = values[:, -1, tf.newaxis]
return tf.where(
logits < min_values,
tf.ones_like(logits, dtype=logits.dtype) * -1e10,
logits,
)
return tf.cond(
tf.equal(k, 0),
lambda: logits,
lambda: _top_k(),
)
示例5: top_k_logits
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import newaxis [as 別名]
def top_k_logits(logits, k):
if k == 0:
# no truncation
return logits
def _top_k():
values, _ = tf.nn.top_k(logits, k=k)
min_values = values[:, -1, tf.newaxis]
return tf.where(
logits < min_values,
tf.ones_like(logits, dtype=logits.dtype) * -1e10,
logits,
)
return tf.cond(
tf.equal(k, 0),
lambda: logits,
lambda: _top_k(),
)
示例6: testDiscreteAutoregressiveFlowSample
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import newaxis [as 別名]
def testDiscreteAutoregressiveFlowSample(self, loc_only):
batch_size = 5
length = 2
vocab_size = 2
if loc_only:
units = vocab_size
network = reversible.MADE(units, [])
else:
units = 2 * vocab_size
mask = tf.reshape([0] * vocab_size + [-1e10] + [0] * (vocab_size - 1),
[1, 1, 2 * vocab_size])
network_ = reversible.MADE(units, [])
network = lambda inputs: mask + network_(inputs)
layer = reversible.DiscreteAutoregressiveFlow(network, 1.)
logits = tf.tile(tf.random_normal([length, vocab_size])[tf.newaxis],
[batch_size, 1, 1])
base = tfp.edward2.OneHotCategorical(logits=logits, dtype=tf.float32)
outputs = layer(base)
_ = outputs.value # need to do this to instantiate tf.variables
self.evaluate(tf.global_variables_initializer())
res = self.evaluate(outputs)
self.assertEqual(res.shape, (batch_size, length, vocab_size))
self.assertAllGreaterEqual(res, 0)
self.assertAllLessEqual(res, vocab_size - 1)
示例7: testOneHotMinusExactSoft
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import newaxis [as 別名]
def testOneHotMinusExactSoft(self):
inputs = tf.constant([[0., 1., 0.],
[0., 0., 1.]])
shift = tf.constant([[0.1, 0.6, 0.3],
[0.2, 0.4, 0.4]])
outputs = reversible.one_hot_minus(inputs, shift)
shift_zero = inputs
shift_one = np.array([[1., 0., 0.],
[0., 1., 0.]])
shift_two = np.array([[0., 0., 1.],
[1., 0., 0.]])
expected_outputs = (shift[..., 0][..., tf.newaxis] * shift_zero +
shift[..., 1][..., tf.newaxis] * shift_one +
shift[..., 2][..., tf.newaxis] * shift_two)
actual_outputs_val, expected_outputs_val = self.evaluate([
outputs, expected_outputs])
self.assertAllEqual(actual_outputs_val, expected_outputs_val)
示例8: testOneHotMultiplyExactSoft
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import newaxis [as 別名]
def testOneHotMultiplyExactSoft(self):
inputs = tf.constant([[0., 1., 0.],
[0., 0., 1.]])
scale = tf.constant([[0.1, 0.6, 0.3],
[0.2, 0.4, 0.4]])
outputs = reversible.one_hot_multiply(inputs, scale)
scale_zero = np.array([[0., 0., 0.],
[0., 0., 0.]])
scale_one = inputs
scale_two = np.array([[0., 0., 1.],
[0., 1., 0.]])
expected_outputs = (scale[..., 0][..., tf.newaxis] * scale_zero +
scale[..., 1][..., tf.newaxis] * scale_one +
scale[..., 2][..., tf.newaxis] * scale_two)
actual_outputs_val, expected_outputs_val = self.evaluate([
outputs, expected_outputs])
self.assertAllEqual(actual_outputs_val, expected_outputs_val)
示例9: call
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import newaxis [as 別名]
def call(self, inputs):
batch_shape = tf.shape(inputs)[:-1]
length = tf.shape(inputs)[-1]
ngram_range_counts = []
for n in range(self.minval, self.maxval):
# Reshape inputs from [..., length] to [..., 1, length // n, n], dropping
# remainder elements. Each n-vector is an ngram.
reshaped_inputs = tf.reshape(
inputs[..., :(n * (length // n))],
tf.concat([batch_shape, [1], (length // n)[tf.newaxis], [n]], 0))
# Count the number of times each ngram appears in the input. We do so by
# checking whether each n-vector in the input is equal to each n-vector
# in a Tensor of all possible ngrams. The comparison is batched between
# the input Tensor of shape [..., 1, length // n, n] and the ngrams Tensor
# of shape [..., input_dim**n, 1, n].
ngrams = tf.reshape(
list(np.ndindex((self.input_dim,) * n)),
[1] * (len(inputs.shape)-1) + [self.input_dim**n, 1, n])
is_ngram = tf.equal(
tf.reduce_sum(tf.cast(tf.equal(reshaped_inputs, ngrams), tf.int32),
axis=-1),
n)
ngram_counts = tf.reduce_sum(tf.cast(is_ngram, tf.float32), axis=-1)
ngram_range_counts.append(ngram_counts)
return tf.concat(ngram_range_counts, axis=-1)
示例10: _compute_auxiliary_structure
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import newaxis [as 別名]
def _compute_auxiliary_structure(self, contents_and_mask):
"""Compute segment and position metadata."""
contents = contents_and_mask[:, :self._num_sequences]
start_mask = tf.cast(contents_and_mask[:, self._num_sequences:],
dtype=INDEX_DTYPE)
segment = tf.cumsum(start_mask, axis=0)
uniform_count = tf.ones_like(segment[:, 0])
position = []
for i in range(self._num_sequences):
segment_slice = segment[:, i]
counts = tf.math.segment_sum(uniform_count, segment[:, i])
position.append(tf.range(self._packed_length) - tf.cumsum(
tf.gather(counts, segment_slice - 1) * start_mask[:, i]))
position = tf.concat([i[:, tf.newaxis] for i in position], axis=1)
# Correct for padding tokens.
pad_mask = tf.cast(tf.not_equal(contents, 0), dtype=INDEX_DTYPE)
segment *= pad_mask
position *= pad_mask
return segment, position
示例11: vec_transformationByMat
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import newaxis [as 別名]
def vec_transformationByMat(poses, input_capsule_dim, input_capsule_num, output_capsule_dim, output_capsule_num, shared=True):
inputs_poses_shape = poses.get_shape().as_list()
poses = poses[..., tf.newaxis, :]
poses = tf.tile(
poses, [1, 1, output_capsule_num, 1]
)
if shared:
kernel = capsule_utils._get_weights_wrapper(
name='weights', shape=[1, 1, output_capsule_num, output_capsule_dim, input_capsule_dim], weights_decay_factor=0.0
)
kernel = tf.tile(
kernel, [inputs_poses_shape[0], input_capsule_num, 1, 1, 1]
)
else:
kernel = capsule_utils._get_weights_wrapper(
name='weights', shape=[1, input_capsule_num, output_capsule_num, output_capsule_dim, input_capsule_dim], weights_decay_factor=0.0
)
kernel = tf.tile(
kernel, [inputs_poses_shape[0], 1, 1, 1, 1]
)
tf.logging.info('poses: {}'.format(poses[...,tf.newaxis].get_shape()))
tf.logging.info('kernel: {}'.format(kernel.get_shape()))
u_hat_vecs = tf.squeeze(tf.matmul(kernel, poses[...,tf.newaxis]),axis=-1)
u_hat_vecs = tf.transpose(u_hat_vecs, (0, 2, 1, 3))
return u_hat_vecs
示例12: enum_ratios_and_thetas
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import newaxis [as 別名]
def enum_ratios_and_thetas(anchors, anchor_ratios, anchor_angles):
'''
ratio = h /w
:param anchors:
:param anchor_ratios:
:return:
'''
ws = anchors[:, 2] # for base anchor: w == h
hs = anchors[:, 3]
anchor_angles = tf.constant(anchor_angles, tf.float32)
sqrt_ratios = tf.sqrt(tf.constant(anchor_ratios))
ws = tf.reshape(ws / sqrt_ratios[:, tf.newaxis], [-1])
hs = tf.reshape(hs * sqrt_ratios[:, tf.newaxis], [-1])
ws, _ = tf.meshgrid(ws, anchor_angles)
hs, anchor_angles = tf.meshgrid(hs, anchor_angles)
anchor_angles = tf.reshape(anchor_angles, [-1, 1])
ws = tf.reshape(ws, [-1, 1])
hs = tf.reshape(hs, [-1, 1])
return ws, hs, anchor_angles
示例13: _create_masks
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import newaxis [as 別名]
def _create_masks(x, input_length, y):
r""" Generate a square mask for the sequence. The masked positions are
filled with float(1.0). Unmasked positions are filled with float(0.0).
"""
input_mask, output_mask = None, None
if x is not None:
input_mask = 1.0 - tf.sequence_mask(
input_length, tf.shape(x)[1], dtype=tf.float32
)
input_mask = input_mask[:, tf.newaxis, tf.newaxis, :]
input_mask.set_shape([None, None, None, None])
if y is not None:
output_mask = tf.cast(tf.math.equal(y, 0), tf.float32)
output_mask = output_mask[:, tf.newaxis, tf.newaxis, :]
look_ahead_mask = generate_square_subsequent_mask(tf.shape(y)[1])
output_mask = tf.maximum(output_mask, look_ahead_mask)
output_mask.set_shape([None, None, None, None])
return input_mask, output_mask
示例14: top_k_logits
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import newaxis [as 別名]
def top_k_logits(logits, k):
if k == 0:
# no truncation
return logits
def _top_k():
values, _ = tf.nn.top_k(logits, k=k)
min_values = values[:, -1, tf.newaxis]
return tf.where(
logits < min_values,
tf.ones_like(logits, dtype=logits.dtype) * -1e10,
logits,
)
return tf.cond(
tf.equal(k, 0),
lambda: logits,
lambda: _top_k(),
)
示例15: get_balanced_distribution_for_mote_carlo_sampling
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import newaxis [as 別名]
def get_balanced_distribution_for_mote_carlo_sampling(self, ground_truth):
N = self._placeholder_global_features[:, self.dim_num_vertices] # [b]
NN = tf.tile(N[..., tf.newaxis], multiples=[1, self.max_vertices]) # [b]
M = tf.sequence_mask(tf.cast(N, dtype=tf.int64), maxlen=self.max_vertices) # [b, v]
M = tf.cast(M, dtype=tf.float32)
MM = tf.cast(tf.sequence_mask(tf.cast(NN, dtype=tf.int64), maxlen=self.max_vertices), tf.float32)* M[...,tf.newaxis] #[b, v, v]
P = tf.cast(ground_truth, dtype=tf.float32)
X = tf.reduce_sum(P, axis=2)
Y = tf.reduce_sum(P, axis=2)
G_0 = tf.cast(tf.equal(ground_truth,0), tf.float32)
G_1 = tf.cast(tf.equal(ground_truth,1), tf.float32)
X = tf.reduce_sum(G_0*MM, axis=2)
Y = tf.reduce_sum(G_1*MM, axis=2)
P_0 = G_0 * 0.5 * ((X+Y)/X)[..., tf.newaxis] * MM
P_1 = G_1 * 0.5 * ((X+Y)/Y)[..., tf.newaxis] * MM
P = P_0 + P_1
return P