本文整理匯總了Python中tensorflow.neg方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.neg方法的具體用法?Python tensorflow.neg怎麽用?Python tensorflow.neg使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.neg方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testSideEffect
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import neg [as 別名]
def testSideEffect(self):
a = tf.constant(1)
b = tf.constant(1)
c = tf.add(a, b)
with tf.control_dependencies([c]):
d = tf.constant(42)
n = tf.neg(c)
shared = []
def sub(t):
shared.append(t)
return t
c = subscribe.subscribe(c, lambda t: tf.py_func(sub, [t], [t.dtype]))
with self.test_session() as sess:
c_out = sess.run([c])
n_out = sess.run([n])
d_out = sess.run([d])
self.assertEquals(n_out, [-2])
self.assertEquals(c_out, [2])
self.assertEquals(d_out, [42])
self.assertEquals(shared, [2, 2, 2])
示例2: init_ops_for_training
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import neg [as 別名]
def init_ops_for_training(self, critic):
# actors gradients are the gradients for it's output w.r.t it's vars using initial
# gradients provided by critic. this requires that critic was init'd with an
# input_action = actor.output_action (which is natural anyway)
# we wrap the optimiser in namespace since we don't want this as part of copy to
# target networks.
# note that we negate the gradients from critic since we are trying to maximise
# the q values (not minimise like a loss)
with tf.variable_scope("optimiser"):
gradients = tf.gradients(self.output_action,
self.trainable_model_vars(),
tf.neg(critic.q_gradients_wrt_actions()))
gradients = zip(gradients, self.trainable_model_vars())
# potentially clip and wrap with debugging
gradients = util.clip_and_debug_gradients(gradients, opts)
# apply
optimiser = tf.train.GradientDescentOptimizer(opts.actor_learning_rate)
self.train_op = optimiser.apply_gradients(gradients)
示例3: testFloatBasic
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import neg [as 別名]
def testFloatBasic(self):
x = np.arange(-3, 3).reshape(1, 3, 2).astype(np.float32)
y = (x + .5).astype(np.float32) # no zero
z = (x + 15.5).astype(np.float32) # all positive
k = np.arange(-0.90, 0.90, 0.25).astype(np.float32) # between -1 and 1
self._compareBoth(x, np.abs, tf.abs)
self._compareBoth(x, np.abs, _ABS)
self._compareBoth(x, np.negative, tf.neg)
self._compareBoth(x, np.negative, _NEG)
self._compareBoth(y, self._inv, tf.inv)
self._compareBoth(x, np.square, tf.square)
self._compareBoth(z, np.sqrt, tf.sqrt)
self._compareBoth(z, self._rsqrt, tf.rsqrt)
self._compareBoth(x, np.exp, tf.exp)
self._compareBoth(z, np.log, tf.log)
self._compareBoth(z, np.log1p, tf.log1p)
self._compareBoth(x, np.tanh, tf.tanh)
self._compareBoth(x, self._sigmoid, tf.sigmoid)
self._compareBoth(y, np.sign, tf.sign)
self._compareBoth(x, np.sin, tf.sin)
self._compareBoth(x, np.cos, tf.cos)
self._compareBoth(k, np.arcsin, tf.asin)
self._compareBoth(k, np.arccos, tf.acos)
self._compareBoth(x, np.arctan, tf.atan)
self._compareBoth(x, np.tan, tf.tan)
self._compareBoth(
y,
np.vectorize(self._replace_domain_error_with_inf(math.lgamma)),
tf.lgamma)
self._compareBoth(x, np.vectorize(math.erf), tf.erf)
self._compareBoth(x, np.vectorize(math.erfc), tf.erfc)
self._compareBothSparse(x, np.abs, tf.abs)
self._compareBothSparse(x, np.negative, tf.neg)
self._compareBothSparse(x, np.square, tf.square)
self._compareBothSparse(z, np.sqrt, tf.sqrt, tol=1e-3)
self._compareBothSparse(x, np.tanh, tf.tanh)
self._compareBothSparse(y, np.sign, tf.sign)
self._compareBothSparse(x, np.vectorize(math.erf), tf.erf)
示例4: testFloatEmpty
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import neg [as 別名]
def testFloatEmpty(self):
x = np.empty((2, 0, 5), dtype=np.float32)
self._compareBoth(x, np.abs, tf.abs)
self._compareBoth(x, np.abs, _ABS)
self._compareBoth(x, np.negative, tf.neg)
self._compareBoth(x, np.negative, _NEG)
self._compareBoth(x, self._inv, tf.inv)
self._compareBoth(x, np.square, tf.square)
self._compareBoth(x, np.sqrt, tf.sqrt)
self._compareBoth(x, self._rsqrt, tf.rsqrt)
self._compareBoth(x, np.exp, tf.exp)
self._compareBoth(x, np.log, tf.log)
self._compareBoth(x, np.log1p, tf.log1p)
self._compareBoth(x, np.tanh, tf.tanh)
self._compareBoth(x, self._sigmoid, tf.sigmoid)
self._compareBoth(x, np.sign, tf.sign)
self._compareBoth(x, np.sin, tf.sin)
self._compareBoth(x, np.cos, tf.cos)
# Can't use vectorize below, so just use some arbitrary function
self._compareBoth(x, np.sign, tf.lgamma)
self._compareBoth(x, np.sign, tf.erf)
self._compareBoth(x, np.sign, tf.erfc)
self._compareBoth(x, np.tan, tf.tan)
self._compareBoth(x, np.arcsin, tf.asin)
self._compareBoth(x, np.arccos, tf.acos)
self._compareBoth(x, np.arctan, tf.atan)
self._compareBothSparse(x, np.abs, tf.abs)
self._compareBothSparse(x, np.negative, tf.neg)
self._compareBothSparse(x, np.square, tf.square)
self._compareBothSparse(x, np.sqrt, tf.sqrt, tol=1e-3)
self._compareBothSparse(x, np.tanh, tf.tanh)
self._compareBothSparse(x, np.sign, tf.sign)
self._compareBothSparse(x, np.sign, tf.erf)
示例5: testDoubleBasic
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import neg [as 別名]
def testDoubleBasic(self):
x = np.arange(-3, 3).reshape(1, 3, 2).astype(np.float64)
y = (x + .5).astype(np.float64) # no zero
z = (x + 15.5).astype(np.float64) # all positive
k = np.arange(-0.90, 0.90, 0.35).reshape(1, 3, 2).astype(np.float64) # between -1 and 1
self._compareBoth(x, np.abs, tf.abs)
self._compareBoth(x, np.abs, _ABS)
self._compareBoth(x, np.negative, tf.neg)
self._compareBoth(x, np.negative, _NEG)
self._compareBoth(y, self._inv, tf.inv)
self._compareBoth(x, np.square, tf.square)
self._compareBoth(z, np.sqrt, tf.sqrt)
self._compareBoth(z, self._rsqrt, tf.rsqrt)
self._compareBoth(x, np.exp, tf.exp)
self._compareBoth(z, np.log, tf.log)
self._compareBoth(z, np.log1p, tf.log1p)
self._compareBoth(x, np.tanh, tf.tanh)
self._compareBoth(x, self._sigmoid, tf.sigmoid)
self._compareBoth(y, np.sign, tf.sign)
self._compareBoth(x, np.sin, tf.sin)
self._compareBoth(x, np.cos, tf.cos)
self._compareBoth(
y,
np.vectorize(self._replace_domain_error_with_inf(math.lgamma)),
tf.lgamma)
self._compareBoth(x, np.vectorize(math.erf), tf.erf)
self._compareBoth(x, np.vectorize(math.erfc), tf.erfc)
self._compareBoth(x, np.arctan, tf.atan)
self._compareBoth(k, np.arcsin, tf.asin)
self._compareBoth(k, np.arccos, tf.acos)
self._compareBoth(k, np.tan, tf.tan)
self._compareBothSparse(x, np.abs, tf.abs)
self._compareBothSparse(x, np.negative, tf.neg)
self._compareBothSparse(x, np.square, tf.square)
self._compareBothSparse(z, np.sqrt, tf.sqrt, tol=1e-3)
self._compareBothSparse(x, np.tanh, tf.tanh)
self._compareBothSparse(y, np.sign, tf.sign)
self._compareBothSparse(x, np.vectorize(math.erf), tf.erf)
示例6: testHalfBasic
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import neg [as 別名]
def testHalfBasic(self):
x = np.arange(-3, 3).reshape(1, 3, 2).astype(np.float16)
y = (x + .5).astype(np.float16) # no zero
z = (x + 15.5).astype(np.float16) # all positive
self._compareBoth(x, np.abs, tf.abs)
self._compareBoth(x, np.abs, _ABS)
self._compareBoth(x, np.negative, tf.neg)
self._compareBoth(x, np.negative, _NEG)
self._compareBoth(y, self._inv, tf.inv)
self._compareBoth(x, np.square, tf.square)
self._compareBoth(z, np.sqrt, tf.sqrt)
self._compareBoth(z, self._rsqrt, tf.rsqrt)
self._compareBoth(x, np.exp, tf.exp)
self._compareBoth(z, np.log, tf.log)
self._compareBoth(z, np.log1p, tf.log1p)
self._compareBoth(x, np.tanh, tf.tanh)
self._compareBoth(x, self._sigmoid, tf.sigmoid)
self._compareBoth(y, np.sign, tf.sign)
self._compareBoth(x, np.sin, tf.sin)
self._compareBoth(x, np.cos, tf.cos)
self._compareBoth(
y,
np.vectorize(self._replace_domain_error_with_inf(math.lgamma)),
tf.lgamma)
self._compareBoth(x, np.vectorize(math.erf), tf.erf)
self._compareBoth(x, np.vectorize(math.erfc), tf.erfc)
self._compareBothSparse(x, np.abs, tf.abs)
self._compareBothSparse(x, np.negative, tf.neg)
self._compareBothSparse(x, np.square, tf.square)
self._compareBothSparse(z, np.sqrt, tf.sqrt, tol=1e-3)
self._compareBothSparse(x, np.tanh, tf.tanh)
self._compareBothSparse(y, np.sign, tf.sign)
self._compareBothSparse(x, np.vectorize(math.erf), tf.erf, tol=1e-3)
示例7: testInt32Basic
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import neg [as 別名]
def testInt32Basic(self):
x = np.arange(-6, 6, 2).reshape(1, 3, 2).astype(np.int32)
self._compareCpu(x, np.abs, tf.abs)
self._compareCpu(x, np.abs, _ABS)
self._compareBoth(x, np.negative, tf.neg)
self._compareBoth(x, np.negative, _NEG)
self._compareBoth(x, np.square, tf.square)
self._compareCpu(x, np.sign, tf.sign)
self._compareBothSparse(x, np.abs, tf.abs)
self._compareBothSparse(x, np.negative, tf.neg)
self._compareBothSparse(x, np.square, tf.square)
self._compareBothSparse(x, np.sign, tf.sign)
示例8: testComplex64Basic
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import neg [as 別名]
def testComplex64Basic(self):
x = np.complex(1, 1) * np.arange(-3, 3).reshape(1, 3, 2).astype(
np.complex64)
y = x + 0.5 # no zeros
self._compareCpu(x, np.abs, tf.complex_abs)
self._compareCpu(x, np.abs, _ABS)
self._compareCpu(x, np.negative, tf.neg)
self._compareCpu(x, np.negative, _NEG)
self._compareCpu(y, self._inv, tf.inv)
self._compareCpu(x, np.square, tf.square)
self._compareCpu(y, np.sqrt, tf.sqrt)
self._compareCpu(y, self._rsqrt, tf.rsqrt)
self._compareCpu(x, np.exp, tf.exp)
self._compareCpu(y, np.log, tf.log)
self._compareCpu(y, np.log1p, tf.log1p)
self._compareCpu(x, np.tanh, tf.tanh)
self._compareCpu(x, self._sigmoid, tf.sigmoid)
self._compareCpu(x, np.sin, tf.sin)
self._compareCpu(x, np.cos, tf.cos)
self._compareBothSparse(x, np.abs, tf.abs)
self._compareBothSparse(x, np.negative, tf.neg)
self._compareBothSparse(x, np.square, tf.square)
self._compareBothSparse(x, np.sqrt, tf.sqrt, 1e-3)
self._compareBothSparse(x, np.tanh, tf.tanh)
# Numpy uses an incorrect definition of sign; use the right one instead.
def complex_sign(x):
return x / np.abs(x)
self._compareCpu(y, complex_sign, tf.sign)
self._compareBothSparse(y, complex_sign, tf.sign)
示例9: testComplex128Basic
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import neg [as 別名]
def testComplex128Basic(self):
x = np.complex(1, 1) * np.arange(-3, 3).reshape(1, 3, 2).astype(
np.complex128)
y = x + 0.5 # no zeros
self._compareCpu(x, np.abs, tf.abs)
self._compareCpu(x, np.abs, _ABS)
self._compareCpu(x, np.negative, tf.neg)
self._compareCpu(x, np.negative, _NEG)
self._compareCpu(y, self._inv, tf.inv)
self._compareCpu(x, np.square, tf.square)
self._compareCpu(y, np.sqrt, tf.sqrt)
self._compareCpu(y, self._rsqrt, tf.rsqrt)
self._compareCpu(x, np.exp, tf.exp)
self._compareCpu(y, np.log, tf.log)
self._compareCpu(y, np.log1p, tf.log1p)
self._compareCpu(x, np.tanh, tf.tanh)
self._compareCpu(x, self._sigmoid, tf.sigmoid)
self._compareCpu(x, np.sin, tf.sin)
self._compareCpu(x, np.cos, tf.cos)
self._compareBothSparse(x, np.abs, tf.abs)
self._compareBothSparse(x, np.negative, tf.neg)
self._compareBothSparse(x, np.square, tf.square)
self._compareBothSparse(x, np.sqrt, tf.sqrt, 1e-3)
self._compareBothSparse(x, np.tanh, tf.tanh)
# Numpy uses an incorrect definition of sign; use the right one instead.
def complex_sign(x):
return x / np.abs(x)
self._compareCpu(y, complex_sign, tf.sign)
self._compareBothSparse(y, complex_sign, tf.sign)
示例10: activation
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import neg [as 別名]
def activation(type, synapse):
"""Chooses the activation function to use."""
if type == "sigmoid":
return tf.sigmoid(synapse)
elif type == "linear":
return synapse
elif type == "tanh":
return tf.tanh(synapse)
elif type == "radial":
return tf.sqrt(tf.exp(tf.neg(tf.square(synapse))))
示例11: gaussian_kernel
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import neg [as 別名]
def gaussian_kernel(tensor_a, a_inputs, tensor_b, b_inputs, gamma):
"""Returns the Gaussian kernel matrix of two matrices of vectors
element-wise."""
cross = cross_matrices(tensor_a, a_inputs, tensor_b, b_inputs)
kernel = tf.exp(tf.mul(tf.reduce_sum(tf.square(
tf.sub(cross[0], cross[1])), reduction_indices=2),
tf.neg(tf.constant(gamma, dtype=tf.float32))))
return kernel
示例12: build_energy_op
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import neg [as 別名]
def build_energy_op(self):
with self.graph.as_default(), tf.device(self.energy_device):
# [1, nbatch]
e_x_0 = tf.neg((self.state_pl[0, :] ** 2) / (self.scale ** 2), name='E_x_0')
# [ndims - 1, nbatch]
e_x_k = tf.neg((self.state_pl[1:, :] ** 2) / tf.exp(self.state_pl[0, :]), name='E_x_k')
# [nbatch]
self.energy_op = tf.reduce_sum(tf.add(e_x_0, e_x_k), 0, name='energy_op')
示例13: __call__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import neg [as 別名]
def __call__(self, x, l=1.0):
grad_name = "FlipGradient%d" % self.num_calls
@ops.RegisterGradient(grad_name)
def _flip_gradients(op, grad):
return [tf.neg(grad) * l]
g = tf.get_default_graph()
with g.gradient_override_map({"Identity": grad_name}):
y = tf.identity(x)
self.num_calls += 1
return y
示例14: loss_function
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import neg [as 別名]
def loss_function(self):
pos_diff = self.anchor - self.positive
neg_diff = self.anchor - self.negative
pos_dist = tf.reduce_sum(tf.mul(pos_diff, pos_diff), 1)
neg_dist = tf.reduce_sum(tf.mul(neg_diff, neg_diff), 1)
triplet = tf.add(self.ALPHA, tf.add(pos_dist, tf.neg(neg_dist)))
return tf.reduce_sum(tf.nn.relu(triplet))