本文整理匯總了Python中tensorflow.name_scope方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.name_scope方法的具體用法?Python tensorflow.name_scope怎麽用?Python tensorflow.name_scope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.name_scope方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: stackedRNN
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def stackedRNN(self, x, dropout, scope, embedding_size, sequence_length, hidden_units):
n_hidden=hidden_units
n_layers=3
# Prepare data shape to match `static_rnn` function requirements
x = tf.unstack(tf.transpose(x, perm=[1, 0, 2]))
# print(x)
# Define lstm cells with tensorflow
# Forward direction cell
with tf.name_scope("fw"+scope),tf.variable_scope("fw"+scope):
stacked_rnn_fw = []
for _ in range(n_layers):
fw_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0, state_is_tuple=True)
lstm_fw_cell = tf.contrib.rnn.DropoutWrapper(fw_cell,output_keep_prob=dropout)
stacked_rnn_fw.append(lstm_fw_cell)
lstm_fw_cell_m = tf.nn.rnn_cell.MultiRNNCell(cells=stacked_rnn_fw, state_is_tuple=True)
outputs, _ = tf.nn.static_rnn(lstm_fw_cell_m, x, dtype=tf.float32)
return outputs[-1]
示例2: autosummary
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def autosummary(name, value):
id = name.replace('/', '_')
if is_tf_expression(value):
with tf.name_scope('summary_' + id), tf.device(value.device):
update_op = _create_autosummary_var(name, value)
with tf.control_dependencies([update_op]):
return tf.identity(value)
else: # python scalar or numpy array
if name not in _autosummary_immediate:
with absolute_name_scope('Autosummary/' + id), tf.device(None), tf.control_dependencies(None):
update_value = tf.placeholder(tf.float32)
update_op = _create_autosummary_var(name, update_value)
_autosummary_immediate[name] = update_op, update_value
update_op, update_value = _autosummary_immediate[name]
run(update_op, {update_value: np.float32(value)})
return value
# Create the necessary ops to include autosummaries in TensorBoard report.
# Note: This should be done only once per graph.
示例3: finalize_autosummaries
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def finalize_autosummaries():
global _autosummary_finalized
if _autosummary_finalized:
return
_autosummary_finalized = True
init_uninited_vars([var for vars in _autosummary_vars.values() for var in vars])
with tf.device(None), tf.control_dependencies(None):
for name, vars in _autosummary_vars.items():
id = name.replace('/', '_')
with absolute_name_scope('Autosummary/' + id):
sum = tf.add_n(vars)
avg = sum[0] / sum[1]
with tf.control_dependencies([avg]): # read before resetting
reset_ops = [tf.assign(var, tf.zeros(2)) for var in vars]
with tf.name_scope(None), tf.control_dependencies(reset_ops): # reset before reporting
tf.summary.scalar(name, avg)
# Internal helper for creating autosummary accumulators.
示例4: nn_layer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
# 同一層神經網絡放在一個統一的命名空間下
with tf.name_scope(layer_name):
with tf.name_scope('weights'):
# 權重及監控變量
weights = tf.Variable(tf.truncated_normal([input_dim, output_dim], stddev=0.1))
variable_summaries(weights, layer_name+'/weights')
with tf.name_scope('biases'):
# 偏置及監控變量
biases = tf.Variable(tf.constant(0.0, shape=[output_dim]))
variable_summaries(biases, layer_name + '/biases')
with tf.name_scope('Wx_plus_b'):
preactivate = tf.matmul(input_tensor, weights) + biases
# 記錄神經網絡輸出節點在經過激活函數之前的分布
tf.summary.histogram(layer_name + '/pre_activations', preactivate)
activations = act(preactivate, name='activation')
# 記錄神經網絡輸出節點在經過激活函數之後的分布
tf.summary.histogram(layer_name + '/activations', activations)
return activations
示例5: _create_loss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def _create_loss(self):
""" Step 4: define the loss function """
with tf.name_scope('loss'):
# construct variables for NCE loss
nce_weight = tf.get_variable('nce_weight',
shape=[self.vocab_size, self.embed_size],
initializer=tf.truncated_normal_initializer(
stddev=1.0 / (self.embed_size ** 0.5)))
nce_bias = tf.get_variable('nce_bias', initializer=tf.zeros([VOCAB_SIZE]))
# define loss function to be NCE loss function
self.loss = tf.reduce_mean(tf.nn.nce_loss(weights=nce_weight,
biases=nce_bias,
labels=self.target_words,
inputs=self.embed,
num_sampled=self.num_sampled,
num_classes=self.vocab_size), name='loss')
示例6: clone_scope
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def clone_scope(self, clone_index):
"""Name scope to create the clone.
Args:
clone_index: Int, representing the clone_index.
Returns:
A name_scope suitable for `tf.name_scope()`.
Raises:
ValueError: if `clone_index` is greater or equal to the number of clones".
"""
if clone_index >= self._num_clones:
raise ValueError('clone_index must be less than num_clones')
scope = ''
if self._num_clones > 1:
scope = 'clone_%d' % clone_index
return scope
示例7: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def __init__(self, config):
entity_total = config.entity
relation_total = config.relation
batch_size = config.batch_size
size = config.hidden_size
margin = config.margin
self.pos_h = tf.placeholder(tf.int32, [None])
self.pos_t = tf.placeholder(tf.int32, [None])
self.pos_r = tf.placeholder(tf.int32, [None])
self.neg_h = tf.placeholder(tf.int32, [None])
self.neg_t = tf.placeholder(tf.int32, [None])
self.neg_r = tf.placeholder(tf.int32, [None])
with tf.name_scope("embedding"):
self.ent_embeddings = tf.get_variable(name = "ent_embedding", shape = [entity_total, size], initializer = tf.contrib.layers.xavier_initializer(uniform = False))
self.rel_embeddings = tf.get_variable(name = "rel_embedding", shape = [relation_total, size], initializer = tf.contrib.layers.xavier_initializer(uniform = False))
pos_h_e = tf.nn.embedding_lookup(self.ent_embeddings, self.pos_h)
pos_t_e = tf.nn.embedding_lookup(self.ent_embeddings, self.pos_t)
pos_r_e = tf.nn.embedding_lookup(self.rel_embeddings, self.pos_r)
neg_h_e = tf.nn.embedding_lookup(self.ent_embeddings, self.neg_h)
neg_t_e = tf.nn.embedding_lookup(self.ent_embeddings, self.neg_t)
neg_r_e = tf.nn.embedding_lookup(self.rel_embeddings, self.neg_r)
if config.L1_flag:
pos = tf.reduce_sum(abs(pos_h_e + pos_r_e - pos_t_e), 1, keep_dims = True)
neg = tf.reduce_sum(abs(neg_h_e + neg_r_e - neg_t_e), 1, keep_dims = True)
self.predict = pos
else:
pos = tf.reduce_sum((pos_h_e + pos_r_e - pos_t_e) ** 2, 1, keep_dims = True)
neg = tf.reduce_sum((neg_h_e + neg_r_e - neg_t_e) ** 2, 1, keep_dims = True)
self.predict = pos
with tf.name_scope("output"):
self.loss = tf.reduce_sum(tf.maximum(pos - neg + margin, 0))
示例8: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def __init__(
self, sequence_length, vocab_size, embedding_size, hidden_units, l2_reg_lambda, batch_size, trainableEmbeddings):
# Placeholders for input, output and dropout
self.input_x1 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x1")
self.input_x2 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x2")
self.input_y = tf.placeholder(tf.float32, [None], name="input_y")
self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")
# Keeping track of l2 regularization loss (optional)
l2_loss = tf.constant(0.0, name="l2_loss")
# Embedding layer
with tf.name_scope("embedding"):
self.W = tf.Variable(
tf.constant(0.0, shape=[vocab_size, embedding_size]),
trainable=trainableEmbeddings,name="W")
self.embedded_words1 = tf.nn.embedding_lookup(self.W, self.input_x1)
self.embedded_words2 = tf.nn.embedding_lookup(self.W, self.input_x2)
print self.embedded_words1
# Create a convolution + maxpool layer for each filter size
with tf.name_scope("output"):
self.out1=self.stackedRNN(self.embedded_words1, self.dropout_keep_prob, "side1", embedding_size, sequence_length, hidden_units)
self.out2=self.stackedRNN(self.embedded_words2, self.dropout_keep_prob, "side2", embedding_size, sequence_length, hidden_units)
self.distance = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(self.out1,self.out2)),1,keep_dims=True))
self.distance = tf.div(self.distance, tf.add(tf.sqrt(tf.reduce_sum(tf.square(self.out1),1,keep_dims=True)),tf.sqrt(tf.reduce_sum(tf.square(self.out2),1,keep_dims=True))))
self.distance = tf.reshape(self.distance, [-1], name="distance")
with tf.name_scope("loss"):
self.loss = self.contrastive_loss(self.input_y,self.distance, batch_size)
#### Accuracy computation is outside of this class.
with tf.name_scope("accuracy"):
self.temp_sim = tf.subtract(tf.ones_like(self.distance),tf.rint(self.distance), name="temp_sim") #auto threshold 0.5
correct_predictions = tf.equal(self.temp_sim, self.input_y)
self.accuracy=tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")
示例9: BiRNN
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def BiRNN(self, x, dropout, scope, embedding_size, sequence_length, hidden_units):
n_hidden=hidden_units
n_layers=3
# Prepare data shape to match `static_rnn` function requirements
x = tf.unstack(tf.transpose(x, perm=[1, 0, 2]))
print(x)
# Define lstm cells with tensorflow
# Forward direction cell
with tf.name_scope("fw"+scope),tf.variable_scope("fw"+scope):
stacked_rnn_fw = []
for _ in range(n_layers):
fw_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0, state_is_tuple=True)
lstm_fw_cell = tf.contrib.rnn.DropoutWrapper(fw_cell,output_keep_prob=dropout)
stacked_rnn_fw.append(lstm_fw_cell)
lstm_fw_cell_m = tf.nn.rnn_cell.MultiRNNCell(cells=stacked_rnn_fw, state_is_tuple=True)
with tf.name_scope("bw"+scope),tf.variable_scope("bw"+scope):
stacked_rnn_bw = []
for _ in range(n_layers):
bw_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0, state_is_tuple=True)
lstm_bw_cell = tf.contrib.rnn.DropoutWrapper(bw_cell,output_keep_prob=dropout)
stacked_rnn_bw.append(lstm_bw_cell)
lstm_bw_cell_m = tf.nn.rnn_cell.MultiRNNCell(cells=stacked_rnn_bw, state_is_tuple=True)
# Get lstm cell output
with tf.name_scope("bw"+scope),tf.variable_scope("bw"+scope):
outputs, _, _ = tf.nn.static_bidirectional_rnn(lstm_fw_cell_m, lstm_bw_cell_m, x, dtype=tf.float32)
return outputs[-1]
示例10: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def __init__(
self, sequence_length, vocab_size, embedding_size, hidden_units, l2_reg_lambda, batch_size):
# Placeholders for input, output and dropout
self.input_x1 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x1")
self.input_x2 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x2")
self.input_y = tf.placeholder(tf.float32, [None], name="input_y")
self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")
# Keeping track of l2 regularization loss (optional)
l2_loss = tf.constant(0.0, name="l2_loss")
# Embedding layer
with tf.name_scope("embedding"):
self.W = tf.Variable(
tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
trainable=True,name="W")
self.embedded_chars1 = tf.nn.embedding_lookup(self.W, self.input_x1)
#self.embedded_chars_expanded1 = tf.expand_dims(self.embedded_chars1, -1)
self.embedded_chars2 = tf.nn.embedding_lookup(self.W, self.input_x2)
#self.embedded_chars_expanded2 = tf.expand_dims(self.embedded_chars2, -1)
# Create a convolution + maxpool layer for each filter size
with tf.name_scope("output"):
self.out1=self.BiRNN(self.embedded_chars1, self.dropout_keep_prob, "side1", embedding_size, sequence_length, hidden_units)
self.out2=self.BiRNN(self.embedded_chars2, self.dropout_keep_prob, "side2", embedding_size, sequence_length, hidden_units)
self.distance = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(self.out1,self.out2)),1,keep_dims=True))
self.distance = tf.div(self.distance, tf.add(tf.sqrt(tf.reduce_sum(tf.square(self.out1),1,keep_dims=True)),tf.sqrt(tf.reduce_sum(tf.square(self.out2),1,keep_dims=True))))
self.distance = tf.reshape(self.distance, [-1], name="distance")
with tf.name_scope("loss"):
self.loss = self.contrastive_loss(self.input_y,self.distance, batch_size)
#### Accuracy computation is outside of this class.
with tf.name_scope("accuracy"):
self.temp_sim = tf.subtract(tf.ones_like(self.distance),tf.rint(self.distance), name="temp_sim") #auto threshold 0.5
correct_predictions = tf.equal(self.temp_sim, self.input_y)
self.accuracy=tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")
示例11: flatten
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def flatten(x):
with tf.name_scope('Flatten'):
return tf.reshape(x, [-1])
示例12: log2
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def log2(x):
with tf.name_scope('Log2'):
return tf.log(x) * np.float32(1.0 / np.log(2.0))
示例13: exp2
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def exp2(x):
with tf.name_scope('Exp2'):
return tf.exp(x * np.float32(np.log(2.0)))
示例14: lerp
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def lerp(a, b, t):
with tf.name_scope('Lerp'):
return a + (b - a) * t
示例15: lerp_clip
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def lerp_clip(a, b, t):
with tf.name_scope('LerpClip'):
return a + (b - a) * tf.clip_by_value(t, 0.0, 1.0)