當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.name_scope方法代碼示例

本文整理匯總了Python中tensorflow.name_scope方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.name_scope方法的具體用法?Python tensorflow.name_scope怎麽用?Python tensorflow.name_scope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.name_scope方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: stackedRNN

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def stackedRNN(self, x, dropout, scope, embedding_size, sequence_length, hidden_units):
        n_hidden=hidden_units
        n_layers=3
        # Prepare data shape to match `static_rnn` function requirements
        x = tf.unstack(tf.transpose(x, perm=[1, 0, 2]))
        # print(x)
        # Define lstm cells with tensorflow
        # Forward direction cell

        with tf.name_scope("fw"+scope),tf.variable_scope("fw"+scope):
            stacked_rnn_fw = []
            for _ in range(n_layers):
                fw_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0, state_is_tuple=True)
                lstm_fw_cell = tf.contrib.rnn.DropoutWrapper(fw_cell,output_keep_prob=dropout)
                stacked_rnn_fw.append(lstm_fw_cell)
            lstm_fw_cell_m = tf.nn.rnn_cell.MultiRNNCell(cells=stacked_rnn_fw, state_is_tuple=True)

            outputs, _ = tf.nn.static_rnn(lstm_fw_cell_m, x, dtype=tf.float32)
        return outputs[-1] 
開發者ID:dhwajraj,項目名稱:deep-siamese-text-similarity,代碼行數:21,代碼來源:siamese_network_semantic.py

示例2: autosummary

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def autosummary(name, value):
    id = name.replace('/', '_')
    if is_tf_expression(value):
        with tf.name_scope('summary_' + id), tf.device(value.device):
            update_op = _create_autosummary_var(name, value)
            with tf.control_dependencies([update_op]):
                return tf.identity(value)
    else: # python scalar or numpy array
        if name not in _autosummary_immediate:
            with absolute_name_scope('Autosummary/' + id), tf.device(None), tf.control_dependencies(None):
                update_value = tf.placeholder(tf.float32)
                update_op = _create_autosummary_var(name, update_value)
                _autosummary_immediate[name] = update_op, update_value
        update_op, update_value = _autosummary_immediate[name]
        run(update_op, {update_value: np.float32(value)})
        return value

# Create the necessary ops to include autosummaries in TensorBoard report.
# Note: This should be done only once per graph. 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:21,代碼來源:tfutil.py

示例3: finalize_autosummaries

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def finalize_autosummaries():
    global _autosummary_finalized
    if _autosummary_finalized:
        return
    _autosummary_finalized = True
    init_uninited_vars([var for vars in _autosummary_vars.values() for var in vars])
    with tf.device(None), tf.control_dependencies(None):
        for name, vars in _autosummary_vars.items():
            id = name.replace('/', '_')
            with absolute_name_scope('Autosummary/' + id):
                sum = tf.add_n(vars)
                avg = sum[0] / sum[1]
                with tf.control_dependencies([avg]): # read before resetting
                    reset_ops = [tf.assign(var, tf.zeros(2)) for var in vars]
                    with tf.name_scope(None), tf.control_dependencies(reset_ops): # reset before reporting
                        tf.summary.scalar(name, avg)

# Internal helper for creating autosummary accumulators. 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:20,代碼來源:tfutil.py

示例4: nn_layer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
    # 同一層神經網絡放在一個統一的命名空間下
    with tf.name_scope(layer_name):
        with tf.name_scope('weights'):
            # 權重及監控變量
            weights = tf.Variable(tf.truncated_normal([input_dim, output_dim], stddev=0.1))
            variable_summaries(weights, layer_name+'/weights')

        with tf.name_scope('biases'):
            # 偏置及監控變量
            biases = tf.Variable(tf.constant(0.0, shape=[output_dim]))
            variable_summaries(biases, layer_name + '/biases')

        with tf.name_scope('Wx_plus_b'):
            preactivate = tf.matmul(input_tensor, weights) + biases
            # 記錄神經網絡輸出節點在經過激活函數之前的分布
            tf.summary.histogram(layer_name + '/pre_activations', preactivate)
        
        activations = act(preactivate, name='activation')
        # 記錄神經網絡輸出節點在經過激活函數之後的分布
        tf.summary.histogram(layer_name + '/activations', activations)
        return activations 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:24,代碼來源:mnist_histogram.py

示例5: _create_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def _create_loss(self):
        """ Step 4: define the loss function """
        with tf.name_scope('loss'):
            # construct variables for NCE loss
            nce_weight = tf.get_variable('nce_weight',
                                         shape=[self.vocab_size, self.embed_size],
                                         initializer=tf.truncated_normal_initializer(
                                             stddev=1.0 / (self.embed_size ** 0.5)))
            nce_bias = tf.get_variable('nce_bias', initializer=tf.zeros([VOCAB_SIZE]))

            # define loss function to be NCE loss function
            self.loss = tf.reduce_mean(tf.nn.nce_loss(weights=nce_weight,
                                                      biases=nce_bias,
                                                      labels=self.target_words,
                                                      inputs=self.embed,
                                                      num_sampled=self.num_sampled,
                                                      num_classes=self.vocab_size), name='loss') 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:19,代碼來源:11_w2v_visual.py

示例6: clone_scope

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def clone_scope(self, clone_index):
    """Name scope to create the clone.

    Args:
      clone_index: Int, representing the clone_index.

    Returns:
      A name_scope suitable for `tf.name_scope()`.

    Raises:
      ValueError: if `clone_index` is greater or equal to the number of clones".
    """
    if clone_index >= self._num_clones:
      raise ValueError('clone_index must be less than num_clones')
    scope = ''
    if self._num_clones > 1:
      scope = 'clone_%d' % clone_index
    return scope 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:20,代碼來源:model_deploy.py

示例7: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def __init__(self, config):

		entity_total = config.entity
		relation_total = config.relation
		batch_size = config.batch_size
		size = config.hidden_size
		margin = config.margin

		self.pos_h = tf.placeholder(tf.int32, [None])
		self.pos_t = tf.placeholder(tf.int32, [None])
		self.pos_r = tf.placeholder(tf.int32, [None])

		self.neg_h = tf.placeholder(tf.int32, [None])
		self.neg_t = tf.placeholder(tf.int32, [None])
		self.neg_r = tf.placeholder(tf.int32, [None])

		with tf.name_scope("embedding"):
			self.ent_embeddings = tf.get_variable(name = "ent_embedding", shape = [entity_total, size], initializer = tf.contrib.layers.xavier_initializer(uniform = False))
			self.rel_embeddings = tf.get_variable(name = "rel_embedding", shape = [relation_total, size], initializer = tf.contrib.layers.xavier_initializer(uniform = False))
			pos_h_e = tf.nn.embedding_lookup(self.ent_embeddings, self.pos_h)
			pos_t_e = tf.nn.embedding_lookup(self.ent_embeddings, self.pos_t)
			pos_r_e = tf.nn.embedding_lookup(self.rel_embeddings, self.pos_r)
			neg_h_e = tf.nn.embedding_lookup(self.ent_embeddings, self.neg_h)
			neg_t_e = tf.nn.embedding_lookup(self.ent_embeddings, self.neg_t)
			neg_r_e = tf.nn.embedding_lookup(self.rel_embeddings, self.neg_r)

		if config.L1_flag:
			pos = tf.reduce_sum(abs(pos_h_e + pos_r_e - pos_t_e), 1, keep_dims = True)
			neg = tf.reduce_sum(abs(neg_h_e + neg_r_e - neg_t_e), 1, keep_dims = True)
			self.predict = pos
		else:
			pos = tf.reduce_sum((pos_h_e + pos_r_e - pos_t_e) ** 2, 1, keep_dims = True)
			neg = tf.reduce_sum((neg_h_e + neg_r_e - neg_t_e) ** 2, 1, keep_dims = True)
			self.predict = pos

		with tf.name_scope("output"):
			self.loss = tf.reduce_sum(tf.maximum(pos - neg + margin, 0)) 
開發者ID:thunlp,項目名稱:TensorFlow-TransX,代碼行數:39,代碼來源:transE.py

示例8: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def __init__(
        self, sequence_length, vocab_size, embedding_size, hidden_units, l2_reg_lambda, batch_size, trainableEmbeddings):

        # Placeholders for input, output and dropout
        self.input_x1 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x1")
        self.input_x2 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x2")
        self.input_y = tf.placeholder(tf.float32, [None], name="input_y")
        self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")

        # Keeping track of l2 regularization loss (optional)
        l2_loss = tf.constant(0.0, name="l2_loss")
          
        # Embedding layer
        with tf.name_scope("embedding"):
            self.W = tf.Variable(
                tf.constant(0.0, shape=[vocab_size, embedding_size]),
                trainable=trainableEmbeddings,name="W")
            self.embedded_words1 = tf.nn.embedding_lookup(self.W, self.input_x1)
            self.embedded_words2 = tf.nn.embedding_lookup(self.W, self.input_x2)
        print self.embedded_words1
        # Create a convolution + maxpool layer for each filter size
        with tf.name_scope("output"):
            self.out1=self.stackedRNN(self.embedded_words1, self.dropout_keep_prob, "side1", embedding_size, sequence_length, hidden_units)
            self.out2=self.stackedRNN(self.embedded_words2, self.dropout_keep_prob, "side2", embedding_size, sequence_length, hidden_units)
            self.distance = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(self.out1,self.out2)),1,keep_dims=True))
            self.distance = tf.div(self.distance, tf.add(tf.sqrt(tf.reduce_sum(tf.square(self.out1),1,keep_dims=True)),tf.sqrt(tf.reduce_sum(tf.square(self.out2),1,keep_dims=True))))
            self.distance = tf.reshape(self.distance, [-1], name="distance")
        with tf.name_scope("loss"):
            self.loss = self.contrastive_loss(self.input_y,self.distance, batch_size)
        #### Accuracy computation is outside of this class.
        with tf.name_scope("accuracy"):
            self.temp_sim = tf.subtract(tf.ones_like(self.distance),tf.rint(self.distance), name="temp_sim") #auto threshold 0.5
            correct_predictions = tf.equal(self.temp_sim, self.input_y)
            self.accuracy=tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy") 
開發者ID:dhwajraj,項目名稱:deep-siamese-text-similarity,代碼行數:36,代碼來源:siamese_network_semantic.py

示例9: BiRNN

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def BiRNN(self, x, dropout, scope, embedding_size, sequence_length, hidden_units):
        n_hidden=hidden_units
        n_layers=3
        # Prepare data shape to match `static_rnn` function requirements
        x = tf.unstack(tf.transpose(x, perm=[1, 0, 2]))
        print(x)
        # Define lstm cells with tensorflow
        # Forward direction cell
        with tf.name_scope("fw"+scope),tf.variable_scope("fw"+scope):
            stacked_rnn_fw = []
            for _ in range(n_layers):
                fw_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0, state_is_tuple=True)
                lstm_fw_cell = tf.contrib.rnn.DropoutWrapper(fw_cell,output_keep_prob=dropout)
                stacked_rnn_fw.append(lstm_fw_cell)
            lstm_fw_cell_m = tf.nn.rnn_cell.MultiRNNCell(cells=stacked_rnn_fw, state_is_tuple=True)

        with tf.name_scope("bw"+scope),tf.variable_scope("bw"+scope):
            stacked_rnn_bw = []
            for _ in range(n_layers):
                bw_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0, state_is_tuple=True)
                lstm_bw_cell = tf.contrib.rnn.DropoutWrapper(bw_cell,output_keep_prob=dropout)
                stacked_rnn_bw.append(lstm_bw_cell)
            lstm_bw_cell_m = tf.nn.rnn_cell.MultiRNNCell(cells=stacked_rnn_bw, state_is_tuple=True)
        # Get lstm cell output

        with tf.name_scope("bw"+scope),tf.variable_scope("bw"+scope):
            outputs, _, _ = tf.nn.static_bidirectional_rnn(lstm_fw_cell_m, lstm_bw_cell_m, x, dtype=tf.float32)
        return outputs[-1] 
開發者ID:dhwajraj,項目名稱:deep-siamese-text-similarity,代碼行數:30,代碼來源:siamese_network.py

示例10: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def __init__(
        self, sequence_length, vocab_size, embedding_size, hidden_units, l2_reg_lambda, batch_size):

        # Placeholders for input, output and dropout
        self.input_x1 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x1")
        self.input_x2 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x2")
        self.input_y = tf.placeholder(tf.float32, [None], name="input_y")
        self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")

        # Keeping track of l2 regularization loss (optional)
        l2_loss = tf.constant(0.0, name="l2_loss")
          
        # Embedding layer
        with tf.name_scope("embedding"):
            self.W = tf.Variable(
                tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
                trainable=True,name="W")
            self.embedded_chars1 = tf.nn.embedding_lookup(self.W, self.input_x1)
            #self.embedded_chars_expanded1 = tf.expand_dims(self.embedded_chars1, -1)
            self.embedded_chars2 = tf.nn.embedding_lookup(self.W, self.input_x2)
            #self.embedded_chars_expanded2 = tf.expand_dims(self.embedded_chars2, -1)

        # Create a convolution + maxpool layer for each filter size
        with tf.name_scope("output"):
            self.out1=self.BiRNN(self.embedded_chars1, self.dropout_keep_prob, "side1", embedding_size, sequence_length, hidden_units)
            self.out2=self.BiRNN(self.embedded_chars2, self.dropout_keep_prob, "side2", embedding_size, sequence_length, hidden_units)
            self.distance = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(self.out1,self.out2)),1,keep_dims=True))
            self.distance = tf.div(self.distance, tf.add(tf.sqrt(tf.reduce_sum(tf.square(self.out1),1,keep_dims=True)),tf.sqrt(tf.reduce_sum(tf.square(self.out2),1,keep_dims=True))))
            self.distance = tf.reshape(self.distance, [-1], name="distance")
        with tf.name_scope("loss"):
            self.loss = self.contrastive_loss(self.input_y,self.distance, batch_size)
        #### Accuracy computation is outside of this class.
        with tf.name_scope("accuracy"):
            self.temp_sim = tf.subtract(tf.ones_like(self.distance),tf.rint(self.distance), name="temp_sim") #auto threshold 0.5
            correct_predictions = tf.equal(self.temp_sim, self.input_y)
            self.accuracy=tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy") 
開發者ID:dhwajraj,項目名稱:deep-siamese-text-similarity,代碼行數:38,代碼來源:siamese_network.py

示例11: flatten

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def flatten(x):
    with tf.name_scope('Flatten'):
        return tf.reshape(x, [-1]) 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:5,代碼來源:tfutil.py

示例12: log2

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def log2(x):
    with tf.name_scope('Log2'):
        return tf.log(x) * np.float32(1.0 / np.log(2.0)) 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:5,代碼來源:tfutil.py

示例13: exp2

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def exp2(x):
    with tf.name_scope('Exp2'):
        return tf.exp(x * np.float32(np.log(2.0))) 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:5,代碼來源:tfutil.py

示例14: lerp

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def lerp(a, b, t):
    with tf.name_scope('Lerp'):
        return a + (b - a) * t 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:5,代碼來源:tfutil.py

示例15: lerp_clip

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import name_scope [as 別名]
def lerp_clip(a, b, t):
    with tf.name_scope('LerpClip'):
        return a + (b - a) * tf.clip_by_value(t, 0.0, 1.0) 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:5,代碼來源:tfutil.py


注:本文中的tensorflow.name_scope方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。