當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.multiply方法代碼示例

本文整理匯總了Python中tensorflow.multiply方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.multiply方法的具體用法?Python tensorflow.multiply怎麽用?Python tensorflow.multiply使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.multiply方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _decay

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import multiply [as 別名]
def _decay(self):
        """L2 weight decay loss."""
        if self.decay_cost is not None:
            return self.decay_cost

        costs = []
        if self.device_name is None:
            for var in tf.trainable_variables():
                if var.op.name.find(r'DW') > 0:
                    costs.append(tf.nn.l2_loss(var))
        else:
            for layer in self.layers:
                for var in layer.params_device[self.device_name].values():
                    if (isinstance(var, tf.Variable) and
                            var.op.name.find(r'DW') > 0):
                        costs.append(tf.nn.l2_loss(var))

        self.decay_cost = tf.multiply(self.hps.weight_decay_rate,
                                      tf.add_n(costs))
        return self.decay_cost 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:22,代碼來源:resnet_tf.py

示例2: _variable_with_weight_decay

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import multiply [as 別名]
def _variable_with_weight_decay(name, shape, stddev, wd):
  """Helper to create an initialized Variable with weight decay.

  Note that the Variable is initialized with a truncated normal distribution.
  A weight decay is added only if one is specified.

  Args:
    name: name of the variable
    shape: list of ints
    stddev: standard deviation of a truncated Gaussian
    wd: add L2Loss weight decay multiplied by this float. If None, weight
        decay is not added for this Variable.

  Returns:
    Variable Tensor
  """
  dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
  var = _variable_on_cpu(
      name,
      shape,
      tf.truncated_normal_initializer(stddev=stddev, dtype=dtype))
  if wd is not None:
    weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
    tf.add_to_collection('losses', weight_decay)
  return var 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:27,代碼來源:cifar10.py

示例3: _variable_with_weight_decay

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import multiply [as 別名]
def _variable_with_weight_decay(name, shape, stddev, wd):
  """Helper to create an initialized Variable with weight decay.

  Note that the Variable is initialized with a truncated normal distribution.
  A weight decay is added only if one is specified.

  Args:
    name: name of the variable
    shape: list of ints
    stddev: standard deviation of a truncated Gaussian
    wd: add L2Loss weight decay multiplied by this float. If None, weight
        decay is not added for this Variable.

  Returns:
    Variable Tensor
  """
  var = _variable_on_cpu(name, shape,
                         tf.truncated_normal_initializer(stddev=stddev))
  if wd is not None:
    weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
    tf.add_to_collection('losses', weight_decay)
  return var 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:deep_cnn.py

示例4: l1_regularizer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import multiply [as 別名]
def l1_regularizer(weight=1.0, scope=None):
  """Define a L1 regularizer.

  Args:
    weight: scale the loss by this factor.
    scope: Optional scope for name_scope.

  Returns:
    a regularizer function.
  """
  def regularizer(tensor):
    with tf.name_scope(scope, 'L1Regularizer', [tensor]):
      l1_weight = tf.convert_to_tensor(weight,
                                       dtype=tensor.dtype.base_dtype,
                                       name='weight')
      return tf.multiply(l1_weight, tf.reduce_sum(tf.abs(tensor)), name='value')
  return regularizer 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:losses.py

示例5: l2_regularizer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import multiply [as 別名]
def l2_regularizer(weight=1.0, scope=None):
  """Define a L2 regularizer.

  Args:
    weight: scale the loss by this factor.
    scope: Optional scope for name_scope.

  Returns:
    a regularizer function.
  """
  def regularizer(tensor):
    with tf.name_scope(scope, 'L2Regularizer', [tensor]):
      l2_weight = tf.convert_to_tensor(weight,
                                       dtype=tensor.dtype.base_dtype,
                                       name='weight')
      return tf.multiply(l2_weight, tf.nn.l2_loss(tensor), name='value')
  return regularizer 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:losses.py

示例6: l1_l2_regularizer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import multiply [as 別名]
def l1_l2_regularizer(weight_l1=1.0, weight_l2=1.0, scope=None):
  """Define a L1L2 regularizer.

  Args:
    weight_l1: scale the L1 loss by this factor.
    weight_l2: scale the L2 loss by this factor.
    scope: Optional scope for name_scope.

  Returns:
    a regularizer function.
  """
  def regularizer(tensor):
    with tf.name_scope(scope, 'L1L2Regularizer', [tensor]):
      weight_l1_t = tf.convert_to_tensor(weight_l1,
                                         dtype=tensor.dtype.base_dtype,
                                         name='weight_l1')
      weight_l2_t = tf.convert_to_tensor(weight_l2,
                                         dtype=tensor.dtype.base_dtype,
                                         name='weight_l2')
      reg_l1 = tf.multiply(weight_l1_t, tf.reduce_sum(tf.abs(tensor)),
                      name='value_l1')
      reg_l2 = tf.multiply(weight_l2_t, tf.nn.l2_loss(tensor),
                      name='value_l2')
      return tf.add(reg_l1, reg_l2, name='value')
  return regularizer 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:27,代碼來源:losses.py

示例7: l1_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import multiply [as 別名]
def l1_loss(tensor, weight=1.0, scope=None):
  """Define a L1Loss, useful for regularize, i.e. lasso.

  Args:
    tensor: tensor to regularize.
    weight: scale the loss by this factor.
    scope: Optional scope for name_scope.

  Returns:
    the L1 loss op.
  """
  with tf.name_scope(scope, 'L1Loss', [tensor]):
    weight = tf.convert_to_tensor(weight,
                                  dtype=tensor.dtype.base_dtype,
                                  name='loss_weight')
    loss = tf.multiply(weight, tf.reduce_sum(tf.abs(tensor)), name='value')
    tf.add_to_collection(LOSSES_COLLECTION, loss)
    return loss 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:20,代碼來源:losses.py

示例8: l2_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import multiply [as 別名]
def l2_loss(tensor, weight=1.0, scope=None):
  """Define a L2Loss, useful for regularize, i.e. weight decay.

  Args:
    tensor: tensor to regularize.
    weight: an optional weight to modulate the loss.
    scope: Optional scope for name_scope.

  Returns:
    the L2 loss op.
  """
  with tf.name_scope(scope, 'L2Loss', [tensor]):
    weight = tf.convert_to_tensor(weight,
                                  dtype=tensor.dtype.base_dtype,
                                  name='loss_weight')
    loss = tf.multiply(weight, tf.nn.l2_loss(tensor), name='value')
    tf.add_to_collection(LOSSES_COLLECTION, loss)
    return loss 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:20,代碼來源:losses.py

示例9: dense

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import multiply [as 別名]
def dense(x, size, name, weight_init=None, bias_init=0, weight_loss_dict=None, reuse=None):
    with tf.variable_scope(name, reuse=reuse):
        assert (len(tf.get_variable_scope().name.split('/')) == 2)

        w = tf.get_variable("w", [x.get_shape()[1], size], initializer=weight_init)
        b = tf.get_variable("b", [size], initializer=tf.constant_initializer(bias_init))
        weight_decay_fc = 3e-4

        if weight_loss_dict is not None:
            weight_decay = tf.multiply(tf.nn.l2_loss(w), weight_decay_fc, name='weight_decay_loss')
            if weight_loss_dict is not None:
                weight_loss_dict[w] = weight_decay_fc
                weight_loss_dict[b] = 0.0

            tf.add_to_collection(tf.get_variable_scope().name.split('/')[0] + '_' + 'losses', weight_decay)

        return tf.nn.bias_add(tf.matmul(x, w), b) 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:19,代碼來源:utils.py

示例10: mean_iou

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import multiply [as 別名]
def mean_iou(y_true, y_pred, cls_num=CLS_NUM):
    result = 0
    nc = tf.cast(tf.shape(y_true)[-1], tf.float32)
    for i in range(cls_num):
        # nii = number of pixels of classe i predicted to belong to class i
        nii = tf.reduce_sum(tf.round(tf.multiply(
            y_true[:, :, :, i], y_pred[:, :, :, i])))
        ti = tf.reduce_sum(y_true[:, :, :, i])  # number of pixels of class i
        loc_sum = 0
        for j in range(cls_num):
            # number of pixels of classe j predicted to belong to class i
            nji = tf.reduce_sum(tf.round(tf.multiply(
                y_true[:, :, :, j], y_pred[:, :, :, i])))
            loc_sum += nji
        result += nii / (ti - nii + loc_sum)
    return (1 / nc) * result 
開發者ID:JACKYLUO1991,項目名稱:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代碼行數:18,代碼來源:metric.py

示例11: testRandomFlipBoxes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import multiply [as 別名]
def testRandomFlipBoxes(self):
    boxes = self.createTestBoxes()

    # Case where the boxes are flipped.
    boxes_expected1 = self.expectedBoxesAfterMirroring()

    # Case where the boxes are not flipped.
    boxes_expected2 = boxes

    # After elementwise multiplication, the result should be all-zero since one
    # of them is all-zero.
    boxes_diff = tf.multiply(
        tf.squared_difference(boxes, boxes_expected1),
        tf.squared_difference(boxes, boxes_expected2))
    expected_result = tf.zeros_like(boxes_diff)

    with self.test_session() as sess:
      (boxes_diff, expected_result) = sess.run([boxes_diff, expected_result])
      self.assertAllEqual(boxes_diff, expected_result) 
開發者ID:datitran,項目名稱:object_detector_app,代碼行數:21,代碼來源:preprocessor_test.py

示例12: get_metrics

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import multiply [as 別名]
def get_metrics(predictions, true_predictions, no_turns, mask, num_slots):
    mask = tf.reshape(mask, [-1, num_slots])
    correct_prediction = tf.cast(tf.equal(predictions, true_predictions), "float32") * mask

    num_positives = tf.reduce_sum(true_predictions)
    classified_positives = tf.reduce_sum(predictions)

    true_positives = tf.multiply(predictions, true_predictions)
    num_true_positives = tf.reduce_sum(true_positives)

    recall = num_true_positives / num_positives
    precision = num_true_positives / classified_positives
    f_score = (2 * recall * precision) / (recall + precision)
    accuracy = tf.reduce_sum(correct_prediction) / (tf.cast(tf.reduce_sum(no_turns), dtype="float32") * num_slots)

    return precision, recall, f_score, accuracy



# main.py 
開發者ID:ConvLab,項目名稱:ConvLab,代碼行數:22,代碼來源:mdbt_util.py

示例13: log_likelihood

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import multiply [as 別名]
def log_likelihood(mu, var, x, muq, varq, a, mask_flat, config):
    if config.out_distr == 'bernoulli':
        log_lik = log_bernoulli(x, mu, eps=1e-6)  # (bs*L, d1*d2)
    elif config.out_distr == 'gaussian':
        log_lik = log_gaussian(x, mu, var)

    log_lik = tf.reduce_sum(log_lik, 1)  # (bs*L, )
    log_lik = tf.multiply(mask_flat, log_lik)
    # TODO: dropout scales the output as input/keep_prob. Issue?
    if config.ll_keep_prob < 1.0:
        log_lik = tf.layers.dropout(log_lik, config.ll_keep_prob)

    # We compute the log-likelihood *per frame*
    num_el = tf.reduce_sum(mask_flat)
    log_px_given_a = tf.truediv(tf.reduce_sum(log_lik), num_el)  # ()

    if config.use_vae:
        log_qa_given_x = tf.reduce_sum(log_gaussian(a, muq, varq), 1)  # (bs*L, )
        log_qa_given_x = tf.multiply(mask_flat, log_qa_given_x)
        log_qa_given_x = tf.truediv(tf.reduce_sum(log_qa_given_x), num_el)  # ()
    else:
        log_qa_given_x = tf.constant(0.0, dtype=tf.float32, shape=())

    LL = log_px_given_a - log_qa_given_x
    return LL, log_px_given_a, log_qa_given_x 
開發者ID:simonkamronn,項目名稱:kvae,代碼行數:27,代碼來源:nn.py

示例14: compute_forwards

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import multiply [as 別名]
def compute_forwards(self, reuse=None):
        """Compute the forward step in the Kalman filter.
           The forward pass is intialized with p(z_1)=N(self.mu, self.Sigma).
           We then return the mean and covariances of the predictive distribution p(z_t|z_tm1,u_t), t=2,..T+1
           and the filtering distribution p(z_t|x_1:t,u_1:t), t=1,..T
           We follow the notation of Murphy's book, section 18.3.1
        """

        # To make sure we are not accidentally using the real outputs in the steps with missing values, set them to 0.
        y_masked = tf.multiply(tf.expand_dims(self.mask, 2), self.y)
        inputs = tf.concat([y_masked, self.u, tf.expand_dims(self.mask, 2)], axis=2)

        y_prev = tf.expand_dims(self.y_0, 0)  # (1, dim_y)
        y_prev = tf.tile(y_prev, (tf.shape(self.mu)[0], 1))
        alpha, state, u, buffer = self.alpha(y_prev, self.state, self.u[:, 0], init_buffer=True, reuse= reuse)

        # dummy matrix to initialize B and C in scan
        dummy_init_A = tf.ones([self.Sigma.get_shape()[0], self.dim_z, self.dim_z])
        dummy_init_B = tf.ones([self.Sigma.get_shape()[0], self.dim_z, self.dim_u])
        dummy_init_C = tf.ones([self.Sigma.get_shape()[0], self.dim_y, self.dim_z])
        forward_states = tf.scan(self.forward_step_fn, tf.transpose(inputs, [1, 0, 2]),
                                 initializer=(self.mu, self.Sigma, self.mu, self.Sigma, alpha, u, state, buffer,
                                              dummy_init_A, dummy_init_B, dummy_init_C),
                                 parallel_iterations=1, name='forward')
        return forward_states 
開發者ID:simonkamronn,項目名稱:kvae,代碼行數:27,代碼來源:filter.py

示例15: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import multiply [as 別名]
def __init__(self, state_size, action_size, lr, n_h1=400, n_h2=300, tau=0.001):
    self.state_size = state_size
    self.action_size = action_size
    self.optimizer = tf.train.AdamOptimizer(lr)
    self.tau = tau

    self.n_h1 = n_h1
    self.n_h2 = n_h2

    self.input_s, self.action, self.critic_variables, self.q_value = self._build_network("critic")
    self.input_s_target, self.action_target, self.critic_variables_target, self.q_value_target = self._build_network("critic_target")

    self.target = tf.placeholder(tf.float32, [None])
    self.l2_loss = tf.add_n([tf.nn.l2_loss(v) for v in self.critic_variables])
    self.loss = tf.reduce_mean(tf.square(self.target - self.q_value)) + 0.01*self.l2_loss
    self.optimize = self.optimizer.minimize(self.loss)
    self.update_target_op = [self.critic_variables_target[i].assign(tf.multiply(self.critic_variables[i], self.tau) + tf.multiply(self.critic_variables_target[i], 1 - self.tau)) for i in range(len(self.critic_variables))]
    self.action_gradients = tf.gradients(self.q_value, self.action) 
開發者ID:yrlu,項目名稱:reinforcement_learning,代碼行數:20,代碼來源:critic.py


注:本文中的tensorflow.multiply方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。