本文整理匯總了Python中tensorflow.mul方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.mul方法的具體用法?Python tensorflow.mul怎麽用?Python tensorflow.mul使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.mul方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _step
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mul [as 別名]
def _step(self, f, z, o):
"""
Args:
f:
z:
o:
Returns:
h:
"""
with tf.variable_scope("fo-Pool"):
# f,z,o is batch_size x size
f = tf.sigmoid(f)
z = tf.tanh(z)
o = tf.sigmoid(o)
self.c = tf.mul(f, self.c) + tf.mul(1 - f, z)
self.h = tf.mul(o, self.c) # h is size vector
return self.h
示例2: _variable_with_weight_decay
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mul [as 別名]
def _variable_with_weight_decay(name, shape, stddev, wd):
"""Helper to create an initialized Variable with weight decay.
Note that the Variable is initialized with a truncated normal distribution.
A weight decay is added only if one is specified.
Args:
name: name of the variable
shape: list of ints
stddev: standard deviation of a truncated Gaussian
wd: add L2Loss weight decay multiplied by this float. If None, weight
decay is not added for this Variable.
Returns:
Variable Tensor
"""
var = _variable_on_cpu(name, shape,
tf.truncated_normal_initializer(stddev=stddev))
if wd:
# weight_decay = tf.mul(tf.nn.l2_loss(var), wd, name='weight_loss')
weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return var
示例3: test_binary_ops_combined
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mul [as 別名]
def test_binary_ops_combined(self):
# computation
a = tf.placeholder(tf.float32, shape=(2, 3))
b = tf.placeholder(tf.float32, shape=(2, 3))
c = tf.add(a, b)
d = tf.mul(c, a)
e = tf.div(d, b)
f = tf.sub(a, e)
g = tf.maximum(a, f)
# value
a_val = np.random.rand(*tf_obj_shape(a))
b_val = np.random.rand(*tf_obj_shape(b))
# test
self.run(g, tf_feed_dict={a: a_val, b: b_val})
示例4: l1_regularizer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mul [as 別名]
def l1_regularizer(weight=1.0, scope=None):
"""Define a L1 regularizer.
Args:
weight: scale the loss by this factor.
scope: Optional scope for op_scope.
Returns:
a regularizer function.
"""
def regularizer(tensor):
with tf.op_scope([tensor], scope, 'L1Regularizer'):
l1_weight = tf.convert_to_tensor(weight,
dtype=tensor.dtype.base_dtype,
name='weight')
return tf.mul(l1_weight, tf.reduce_sum(tf.abs(tensor)), name='value')
return regularizer
示例5: l2_regularizer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mul [as 別名]
def l2_regularizer(weight=1.0, scope=None):
"""Define a L2 regularizer.
Args:
weight: scale the loss by this factor.
scope: Optional scope for op_scope.
Returns:
a regularizer function.
"""
def regularizer(tensor):
with tf.op_scope([tensor], scope, 'L2Regularizer'):
l2_weight = tf.convert_to_tensor(weight,
dtype=tensor.dtype.base_dtype,
name='weight')
return tf.mul(l2_weight, tf.nn.l2_loss(tensor), name='value')
return regularizer
示例6: l1_l2_regularizer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mul [as 別名]
def l1_l2_regularizer(weight_l1=1.0, weight_l2=1.0, scope=None):
"""Define a L1L2 regularizer.
Args:
weight_l1: scale the L1 loss by this factor.
weight_l2: scale the L2 loss by this factor.
scope: Optional scope for op_scope.
Returns:
a regularizer function.
"""
def regularizer(tensor):
with tf.op_scope([tensor], scope, 'L1L2Regularizer'):
weight_l1_t = tf.convert_to_tensor(weight_l1,
dtype=tensor.dtype.base_dtype,
name='weight_l1')
weight_l2_t = tf.convert_to_tensor(weight_l2,
dtype=tensor.dtype.base_dtype,
name='weight_l2')
reg_l1 = tf.mul(weight_l1_t, tf.reduce_sum(tf.abs(tensor)),
name='value_l1')
reg_l2 = tf.mul(weight_l2_t, tf.nn.l2_loss(tensor),
name='value_l2')
return tf.add(reg_l1, reg_l2, name='value')
return regularizer
示例7: l1_loss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mul [as 別名]
def l1_loss(tensor, weight=1.0, scope=None):
"""Define a L1Loss, useful for regularize, i.e. lasso.
Args:
tensor: tensor to regularize.
weight: scale the loss by this factor.
scope: Optional scope for op_scope.
Returns:
the L1 loss op.
"""
with tf.op_scope([tensor], scope, 'L1Loss'):
weight = tf.convert_to_tensor(weight,
dtype=tensor.dtype.base_dtype,
name='loss_weight')
loss = tf.mul(weight, tf.reduce_sum(tf.abs(tensor)), name='value')
tf.add_to_collection(LOSSES_COLLECTION, loss)
return loss
示例8: l2_loss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mul [as 別名]
def l2_loss(tensor, weight=1.0, scope=None):
"""Define a L2Loss, useful for regularize, i.e. weight decay.
Args:
tensor: tensor to regularize.
weight: an optional weight to modulate the loss.
scope: Optional scope for op_scope.
Returns:
the L2 loss op.
"""
with tf.op_scope([tensor], scope, 'L2Loss'):
weight = tf.convert_to_tensor(weight,
dtype=tensor.dtype.base_dtype,
name='loss_weight')
loss = tf.mul(weight, tf.nn.l2_loss(tensor), name='value')
tf.add_to_collection(LOSSES_COLLECTION, loss)
return loss
示例9: Minibatch_Discriminator
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mul [as 別名]
def Minibatch_Discriminator(input, num_kernels=100, dim_per_kernel=5, init=False, name='MD'):
num_inputs=df_dim*4
theta = tf.get_variable(name+"/theta",[num_inputs, num_kernels, dim_per_kernel], initializer=tf.random_normal_initializer(stddev=0.05))
log_weight_scale = tf.get_variable(name+"/lws",[num_kernels, dim_per_kernel], initializer=tf.constant_initializer(0.0))
W = tf.mul(theta, tf.expand_dims(tf.exp(log_weight_scale)/tf.sqrt(tf.reduce_sum(tf.square(theta),0)),0))
W = tf.reshape(W,[-1,num_kernels*dim_per_kernel])
x = input
x=tf.reshape(x, [batchsize,num_inputs])
activation = tf.matmul(x, W)
activation = tf.reshape(activation,[-1,num_kernels,dim_per_kernel])
abs_dif = tf.mul(tf.reduce_sum(tf.abs(tf.sub(tf.expand_dims(activation,3),tf.expand_dims(tf.transpose(activation,[1,2,0]),0))),2),
1-tf.expand_dims(tf.constant(np.eye(batchsize),dtype=np.float32),1))
f = tf.reduce_sum(tf.exp(-abs_dif),2)/tf.reduce_sum(tf.exp(-abs_dif))
print(f.get_shape())
print(input.get_shape())
return tf.concat(1,[x, f])
示例10: _variable_with_weight_decay
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mul [as 別名]
def _variable_with_weight_decay(name, shape, stddev, wd):
"""Helper to create an initialized Variable with weight decay.
Note that the Variable is initialized with a truncated normal distribution.
A weight decay is added only if one is specified.
Args:
name: name of the variable
shape: list of ints
stddev: standard deviation of a truncated Gaussian
wd: add L2Loss weight decay multiplied by this float. If None, weight
decay is not added for this Variable.
Returns:
Variable Tensor
"""
var = tf.Variable(tf.random_normal(shape, stddev=stddev), name=name)
'''if wd:
weight_decay = tf.mul(tf.nn.l2_loss(var), wd, name='weight_loss')
tf.add_to_collection('losses', weight_decay)'''
return var
示例11: _variable_with_weight_decay
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mul [as 別名]
def _variable_with_weight_decay(name, shape, stddev, wd):
"""Helper to create an initialized Variable with weight decay.
Note that the Variable is initialized with a truncated normal distribution.
A weight decay is added only if one is specified.
Args:
name: name of the variable
shape: list of ints
stddev: standard deviation of a truncated Gaussian
wd: add L2Loss weight decay multiplied by this float. If None, weight
decay is not added for this Variable.
Returns:
Variable Tensor
"""
var = tf.Variable(tf.random_normal(shape, stddev=stddev), name=name)
if wd:
weight_decay = tf.mul(tf.nn.l2_loss(var), wd, name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return var
示例12: loss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mul [as 別名]
def loss(logits, labels):
"""Calculates Mean Pixel Error.
Args:
logits: Logits from inference().
labels: Labels from distorted_inputs or inputs(). 1-D tensor
of shape [batch_size]
Returns:
Loss tensor of type float.
"""
labelValidity = tf.sign(labels, name='label_validity')
minop = tf.sub(logits, labels, name='Diff_Op')
absop = tf.abs(minop, name='Abs_Op')
lossValues = tf.mul(labelValidity, absop, name='lossValues')
loss_mean = tf.reduce_mean(lossValues, name='MeanPixelError')
tf.add_to_collection('losses', loss_mean)
return tf.add_n(tf.get_collection('losses'), name='total_loss'), loss_mean
示例13: compute_kumar2beta_kld
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mul [as 別名]
def compute_kumar2beta_kld(a, b, alpha, beta):
# precompute some terms
ab = tf.mul(a,b)
a_inv = tf.pow(a, -1)
b_inv = tf.pow(b, -1)
# compute taylor expansion for E[log (1-v)] term
kl = tf.mul(tf.pow(1+ab,-1), beta_fn(a_inv, b))
for idx in xrange(10):
kl += tf.mul(tf.pow(idx+2+ab,-1), beta_fn(tf.mul(idx+2., a_inv), b))
kl = tf.mul(tf.mul(beta-1,b), kl)
kl += tf.mul(tf.div(a-alpha,a), -0.57721 - tf.digamma(b) - b_inv)
# add normalization constants
kl += tf.log(ab) + tf.log(beta_fn(alpha, beta))
# final term
kl += tf.div(-(b-1),b)
return kl
示例14: f_prop
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mul [as 別名]
def f_prop(self):
# init variational params
self.mu = []
self.sigma = []
self.kumar_a = []
self.kumar_b = []
self.z = []
x_recon_linear = []
h1 = mlp(self.X, self.encoder_params['base'])
for k in xrange(self.K):
self.mu.append(mlp(h1, self.encoder_params['mu'][k]))
self.sigma.append(tf.exp(mlp(h1, self.encoder_params['sigma'][k])))
self.z.append(self.mu[-1] + tf.mul(self.sigma[-1], tf.random_normal(tf.shape(self.sigma[-1]))))
x_recon_linear.append(mlp(self.z[-1], self.decoder_params))
self.kumar_a = tf.exp(mlp(h1, self.encoder_params['kumar_a']))
self.kumar_b = tf.exp(mlp(h1, self.encoder_params['kumar_b']))
return x_recon_linear
示例15: get_component_samples
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mul [as 別名]
def get_component_samples(self, latent_dim, batchSize):
a_inv = tf.pow(self.kumar_a,-1)
b_inv = tf.pow(self.kumar_b,-1)
# compose into stick segments using pi = v \prod (1-v)
v_means = tf.mul(self.kumar_b, beta_fn(1.+a_inv, self.kumar_b))
components = tf.to_int32(tf.argmax(tf.concat(1, self.compose_stick_segments(v_means)), 1))
components = tf.concat(1, [tf.expand_dims(tf.range(0,batchSize),1), tf.expand_dims(components,1)])
# sample a z
all_z = []
for d in xrange(latent_dim):
temp_z = tf.concat(1, [tf.expand_dims(self.z[k][:, d],1) for k in xrange(self.K)])
all_z.append(tf.expand_dims(tf.gather_nd(temp_z, components),1))
return tf.concat(1, all_z)