當前位置: 首頁>>代碼示例>>Python>>正文


Python rnn_cell.LSTMCell方法代碼示例

本文整理匯總了Python中tensorflow.models.rnn.rnn_cell.LSTMCell方法的典型用法代碼示例。如果您正苦於以下問題:Python rnn_cell.LSTMCell方法的具體用法?Python rnn_cell.LSTMCell怎麽用?Python rnn_cell.LSTMCell使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.models.rnn.rnn_cell的用法示例。


在下文中一共展示了rnn_cell.LSTMCell方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: bi_lstm_layer

# 需要導入模塊: from tensorflow.models.rnn import rnn_cell [as 別名]
# 或者: from tensorflow.models.rnn.rnn_cell import LSTMCell [as 別名]
def bi_lstm_layer(in_layer, config, reuse=False, name='Bi_LSTM'):
    num_units = config.rnn_hidden_units
    output_size = config.rnn_output_size
    batch_size = int(in_layer.get_shape()[0])
    num_steps = int(in_layer.get_shape()[1])
    input_size = int(in_layer.get_shape()[2])
    initializer = tf.random_uniform_initializer(-0.1, 0.1)
    lstm_cell_f = rnn_cell.LSTMCell(num_units, input_size, use_peepholes=True,
                                    num_proj=output_size, cell_clip=1.0,
                                    initializer=initializer)
    lstm_cell_b = rnn_cell.LSTMCell(num_units, input_size, use_peepholes=True,
                                    num_proj=output_size, cell_clip=1.0,
                                    initializer=initializer)
    initial_state_f = lstm_cell_f.zero_state(batch_size, tf.float32)
    inputs_list = [tf.reshape(x, [batch_size, input_size])
                   for x in tf.split(1, num_steps, in_layer)]
    rnn_out, rnn_states = bi_rnn(lstm_cell_f, lstm_cell_b, inputs_list,
                                 initial_state=initial_state_f, scope=name,
                                 reuse=reuse)
    out_layer = tf.transpose(tf.pack(rnn_out), perm=[1, 0, 2])
    return out_layer 
開發者ID:yjernite,項目名稱:DeepCRF,代碼行數:23,代碼來源:model_defs.py

示例2: model

# 需要導入模塊: from tensorflow.models.rnn import rnn_cell [as 別名]
# 或者: from tensorflow.models.rnn.rnn_cell import LSTMCell [as 別名]
def model():
    initial_loc = tf.random_uniform((batch_size, 2), minval=-1, maxval=1)

    initial_glimpse = get_glimpse(initial_loc)   
    
    lstm_cell = rnn_cell.LSTMCell(cell_size, g_size, num_proj=cell_out_size)

    initial_state = lstm_cell.zero_state(batch_size, tf.float32)
    
    inputs = [initial_glimpse]
    inputs.extend([0] * (glimpses - 1))
    
    outputs, _ = seq2seq.rnn_decoder(inputs, initial_state, lstm_cell, loop_function=get_next_input)
    get_next_input(outputs[-1], 0)
            
    return outputs 
開發者ID:seann999,項目名稱:tensorflow_mnist_ram,代碼行數:18,代碼來源:ram.py

示例3: __init__

# 需要導入模塊: from tensorflow.models.rnn import rnn_cell [as 別名]
# 或者: from tensorflow.models.rnn.rnn_cell import LSTMCell [as 別名]
def __init__(self, rnn_size, rnn_layer, batch_size, input_embedding_size, dim_image, dim_hidden, max_words_q, vocabulary_size, drop_out_rate):

	self.rnn_size = rnn_size
	self.rnn_layer = rnn_layer
	self.batch_size = batch_size
	self.input_embedding_size = input_embedding_size
	self.dim_image = dim_image
	self.dim_hidden = dim_hidden
	self.max_words_q = max_words_q
	self.vocabulary_size = vocabulary_size	
	self.drop_out_rate = drop_out_rate

	# question-embedding
	self.embed_ques_W = tf.Variable(tf.random_uniform([self.vocabulary_size, self.input_embedding_size], -0.08, 0.08), name='embed_ques_W')

	# encoder: RNN body
	self.lstm_1 = rnn_cell.LSTMCell(rnn_size, input_embedding_size, use_peepholes=True)
        self.lstm_dropout_1 = rnn_cell.DropoutWrapper(self.lstm_1, output_keep_prob = 1 - self.drop_out_rate)
        self.lstm_2 = rnn_cell.LSTMCell(rnn_size, rnn_size, use_peepholes=True)
        self.lstm_dropout_2 = rnn_cell.DropoutWrapper(self.lstm_2, output_keep_prob = 1 - self.drop_out_rate)
	self.stacked_lstm = rnn_cell.MultiRNNCell([self.lstm_dropout_1, self.lstm_dropout_2])

	# state-embedding
        self.embed_state_W = tf.Variable(tf.random_uniform([2*rnn_size*rnn_layer, self.dim_hidden], -0.08,0.08),name='embed_state_W')
        self.embed_state_b = tf.Variable(tf.random_uniform([self.dim_hidden], -0.08, 0.08), name='embed_state_b')
	# image-embedding
	self.embed_image_W = tf.Variable(tf.random_uniform([dim_image, self.dim_hidden], -0.08, 0.08), name='embed_image_W')
        self.embed_image_b = tf.Variable(tf.random_uniform([dim_hidden], -0.08, 0.08), name='embed_image_b')
	# score-embedding
	self.embed_scor_W = tf.Variable(tf.random_uniform([dim_hidden, num_output], -0.08, 0.08), name='embed_scor_W')
	self.embed_scor_b = tf.Variable(tf.random_uniform([num_output], -0.08, 0.08), name='embed_scor_b') 
開發者ID:chingyaoc,項目名稱:VQA-tensorflow,代碼行數:33,代碼來源:model_VQA.py


注:本文中的tensorflow.models.rnn.rnn_cell.LSTMCell方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。