本文整理匯總了Python中tensorflow.models.rnn.rnn.rnn方法的典型用法代碼示例。如果您正苦於以下問題:Python rnn.rnn方法的具體用法?Python rnn.rnn怎麽用?Python rnn.rnn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.models.rnn.rnn
的用法示例。
在下文中一共展示了rnn.rnn方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: create_rnn
# 需要導入模塊: from tensorflow.models.rnn import rnn [as 別名]
# 或者: from tensorflow.models.rnn.rnn import rnn [as 別名]
def create_rnn(config, x, scope='rnn'):
with tf.variable_scope(scope):
memory=config['rnn_size']
cell = rnn_cell.BasicLSTMCell(memory)
state = cell.zero_state(batch_size=config['batch_size'], dtype=tf.float32)
x, state = rnn.rnn(cell, [tf.cast(x,tf.float32)], initial_state=state, dtype=tf.float32)
x = x[-1]
#w = tf.get_variable('w', [hc.get('rnn_size'),4])
#b = tf.get_variable('b', [4])
#x = tf.nn.xw_plus_b(x, w, b)
x=tf.sign(x)
return x, state
# Each step of the graph we have:
# x is [BATCH_SIZE, 4] where the data is an one hot binary vector of the form:
# [start_token end_token a b]
#
# y is [BATCH_SIZE, 4] is a binary vector of the chance each character is correct
#
示例2: rnn_model
# 需要導入模塊: from tensorflow.models.rnn import rnn [as 別名]
# 或者: from tensorflow.models.rnn.rnn import rnn [as 別名]
def rnn_model(X, y):
"""Recurrent neural network model to predict from sequence of words
to a class."""
# Convert indexes of words into embeddings.
# This creates embeddings matrix of [n_words, EMBEDDING_SIZE] and then
# maps word indexes of the sequence into [batch_size, sequence_length,
# EMBEDDING_SIZE].
word_vectors = skflow.ops.categorical_variable(X, n_classes=n_words,
embedding_size=EMBEDDING_SIZE, name='words')
# Split into list of embedding per word, while removing doc length dim.
# word_list results to be a list of tensors [batch_size, EMBEDDING_SIZE].
word_list = skflow.ops.split_squeeze(1, MAX_DOCUMENT_LENGTH, word_vectors)
# Create a Gated Recurrent Unit cell with hidden size of EMBEDDING_SIZE.
cell = rnn_cell.GRUCell(EMBEDDING_SIZE)
# Create an unrolled Recurrent Neural Networks to length of
# MAX_DOCUMENT_LENGTH and passes word_list as inputs for each unit.
_, encoding = rnn.rnn(cell, word_list, dtype=tf.float32)
# Given encoding of RNN, take encoding of last step (e.g hidden size of the
# neural network of last step) and pass it as features for logistic
# regression over output classes.
return skflow.models.logistic_regression(encoding, y)
示例3: __init__
# 需要導入模塊: from tensorflow.models.rnn import rnn [as 別名]
# 或者: from tensorflow.models.rnn.rnn import rnn [as 別名]
def __init__(self, is_training, config):
self.batch_size = batch_size = config.batch_size
self.num_steps = num_steps = config.num_steps
size = config.hidden_size
self._input_data = tf.placeholder(tf.float32, [batch_size, num_steps])
self._targets = tf.placeholder(tf.float32, [batch_size, num_steps])
lstm_cell = rnn_cell.BasicLSTMCell(size, forget_bias=0.0)
if is_training and config.keep_prob < 1:
lstm_cell = rnn_cell.DropoutWrapper(lstm_cell, output_keep_prob=config.keep_prob)
cell = rnn_cell.MultiRNNCell([lstm_cell] * config.num_layers)
self._initial_state = cell.zero_state(batch_size, tf.float32)
iw = tf.get_variable("input_w", [1, size])
ib = tf.get_variable("input_b", [size])
inputs = [tf.nn.xw_plus_b(i_, iw, ib) for i_ in tf.split(1, num_steps, self._input_data)]
if is_training and config.keep_prob < 1:
inputs = [tf.nn.dropout(input_, config.keep_prob) for input_ in inputs]
outputs, states = rnn.rnn(cell, inputs, initial_state=self._initial_state)
rnn_output = tf.reshape(tf.concat(1, outputs), [-1, size])
self._output = output = tf.nn.xw_plus_b(rnn_output,
tf.get_variable("out_w", [size, 1]),
tf.get_variable("out_b", [1]))
self._cost = cost = tf.reduce_mean(tf.square(output - tf.reshape(self._targets, [-1])))
self._final_state = states[-1]
if not is_training:
return
self._lr = tf.Variable(0.0, trainable=False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars), config.max_grad_norm)
#optimizer = tf.train.GradientDescentOptimizer(self.lr)
optimizer = tf.train.AdamOptimizer(self.lr)
self._train_op = optimizer.apply_gradients(zip(grads, tvars))
示例4: RNN
# 需要導入模塊: from tensorflow.models.rnn import rnn [as 別名]
# 或者: from tensorflow.models.rnn.rnn import rnn [as 別名]
def RNN(_X, _istate, _weights, _biases):
# input shape: (batch_size, n_steps, n_input)
_X = tf.transpose(_X, [1, 0, 2]) # permute n_steps and batch_size
# Reshape to prepare input to hidden activation
_X = tf.reshape(_X, [-1, n_input]) # (n_steps*batch_size, n_input)
# Linear activation
# _X = tf.matmul(_X, _weights['hidden']) + _biases['hidden']
# Define a lstm cell with tensorflow
lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
# Split data because rnn cell needs a list of inputs for the RNN inner loop
_X = tf.split(0, n_steps, _X) # n_steps * (batch_size, n_hidden)
# Get lstm cell output
outputs, states = rnn.rnn(lstm_cell, _X, initial_state=_istate)
# Linear activation
# Get inner loop last output
# return tf.matmul(outputs[-1], _weights['out']) + _biases['out']
return tf.matmul(outputs[-1], output_w) + output_b
示例5: RNN
# 需要導入模塊: from tensorflow.models.rnn import rnn [as 別名]
# 或者: from tensorflow.models.rnn.rnn import rnn [as 別名]
def RNN(_X, _istate, _weights, _biases):
# input shape: (batch_size, n_steps, n_input)
_X = tf.transpose(_X, [1, 0, 2]) # permute n_steps and batch_size
# Reshape to prepare input to hidden activation
_X = tf.reshape(_X, [-1, n_input]) # (n_steps*batch_size, n_input)
# Linear activation
_X = tf.matmul(_X, _weights['hidden']) + _biases['hidden']
# Define a lstm cell with tensorflow
lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
# Split data because rnn cell needs a list of inputs for the RNN inner loop
_X = tf.split(0, n_steps, _X) # n_steps * (batch_size, n_hidden)
# Get lstm cell output
outputs, states = rnn.rnn(lstm_cell, _X, initial_state=_istate)
# Linear activation
# Get inner loop last output
return tf.matmul(outputs[-1], _weights['out']) + _biases['out'], states[-1]
示例6: RNN
# 需要導入模塊: from tensorflow.models.rnn import rnn [as 別名]
# 或者: from tensorflow.models.rnn.rnn import rnn [as 別名]
def RNN(_X, _istate, _weights, _biases):
# input shape: (batch_size, n_steps, n_input)
_X = tf.transpose(_X, [1, 0, 2]) # permute n_steps and batch_size
# Reshape to prepare input to hidden activation
_X = tf.reshape(_X, [-1, n_input]) # (n_steps*batch_size, n_input)
# Linear activation
_X = tf.matmul(_X, _weights['hidden']) + _biases['hidden']
# Define a lstm cell with tensorflow
lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
# Split data because rnn cell needs a list of inputs for the RNN inner loop
_X = tf.split(0, n_steps, _X) # n_steps * (batch_size, n_hidden)
# Get lstm cell output
outputs, states = rnn.rnn(lstm_cell, _X, initial_state=_istate)
# Linear activation
# Get inner loop last output
return tf.matmul(outputs[-1], _weights['out']) + _biases['out']
示例7: RNN
# 需要導入模塊: from tensorflow.models.rnn import rnn [as 別名]
# 或者: from tensorflow.models.rnn.rnn import rnn [as 別名]
def RNN(x, weights, biases, init_state):
# Prepare data shape to match `rnn` function requirements
# Current data input shape: (batch_size, n_steps, n_input)
# Permuting batch_size and n_steps
x = tf.transpose(x, [1, 0, 2]) #(n_steps , batch_size, n_input)
# Reshaping to (n_steps*batch_size, n_input)
x = tf.reshape(x, [-1, n_input])
# Split to get a list of 'n_steps' tensors of shape (batch_size, n_hidden)
# This input shape is required by `rnn` function
x = tf.split(0, n_steps, x)
'''
?????????????????,???reshape ?demo???1_Introduction??basic_op.
????????????????????????, ???????[batch_size, cell.input_zise]??????,
????????rnn.rnn????
'''
# Define a lstm cell with tensorflow
lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
# Get lstm cell output
outputs, states = rnn.rnn(lstm_cell, x, initial_state=init_state, dtype=tf.float32)
# Linear activation, using rnn inner loop last output
return tf.matmul(outputs[-1], weights['out']) + biases['out'], lstm_cell.state_size
示例8: process_sentence_pair
# 需要導入模塊: from tensorflow.models.rnn import rnn [as 別名]
# 或者: from tensorflow.models.rnn.rnn import rnn [as 別名]
def process_sentence_pair(self, lsentence_raw, rsentence_raw, session, prev_state = None):
""" TODO: this is mad inefficient esp. without symbolic
compiling, should really batch this
Input sentence is just string"""
# convert sentence into word vector array
lsentence = convert_sentence_to_glove_vectors(lsentence_raw, self.vocabulary, self.glove_word_vectors, self.word_vec_size)
rsentence = convert_sentence_to_glove_vectors(rsentence_raw, self.vocabulary, self.glove_word_vectors, self.word_vec_size)
# 5 x 300
_left_inputs = tf.placeholder(tf.float32, [len(lsentence), self.config.word_vec_size])
_right_inputs = tf.placeholder(tf.float32, [len(rsentence), self.config.word_vec_size])
# _targets = tf.placeholder(tf.int32)
# Apply dropout filter
# if self.is_training and self.config.keep_prob < 1:
# left_inputs = [tf.nn.dropout(input_, self.config.keep_prob) for input_ in left_inputs]
# right_inputs = [tf.nn.dropout(input_, self.config.keep_prob) for input_ in right_inputs]
linputs = [ tf.reshape(i, (1, self.config.word_vec_size)) for i in tf.split(0, len(lsentence), _left_inputs)]
rinputs = [ tf.reshape(i, (1, self.config.word_vec_size)) for i in tf.split(0, len(rsentence), _right_inputs)]
if prev_state is None:
prev_state = self.left_lstm_cell.zero_state(1, tf.float32)
with tf.variable_scope("LeftLSTM"):
loutputs, rstates = rnn.rnn(self.left_lstm_cell, linputs, initial_state=prev_state, sequence_length=len(lsentence))
with tf.variable_scope("RightLSTM"):
routputs, rstates = rnn.rnn(self.right_lstm_cell, rinputs, initial_state=prev_state, sequence_length=len(lsentence))
iop = tf.initialize_all_variables()
session.run(iop)
# TODO: the actual loss function and relatedness softmax layer
louts = session.run(loutputs, feed_dict = {_left_inputs : lsentence, _right_inputs : rsentence })
# outputs at each timestep of the sentence (i.e. each word)
print(louts)
print(len(louts))
# print(routs)
示例9: __call__
# 需要導入模塊: from tensorflow.models.rnn import rnn [as 別名]
# 或者: from tensorflow.models.rnn.rnn import rnn [as 別名]
def __call__(self, inputs, start_state, scope=None):
"""Run this RNN cell on inputs, starting from the given state.
Args:
inputs: list of 2D Tensors with shape [batch_size x self.input_size].
start_state: 2D Tensor with shape [batch_size x self.state_size].
scope: VariableScope for the created subgraph; defaults to class name.
Returns:
A pair containing:
- Outputs: list of 2D Tensors with shape [batch_size x self.output_size]
- States: list of 2D Tensors with shape [batch_size x self.state_size].
"""
with vs.variable_scope(scope or "Encoder"):
return rnn_encoder_factory(self.cell, inputs, start_state)
示例10: RNN
# 需要導入模塊: from tensorflow.models.rnn import rnn [as 別名]
# 或者: from tensorflow.models.rnn.rnn import rnn [as 別名]
def RNN(parameters, input, model, initial_state):
# The model is:
# 1. input
# 2. linear layer
# 3 - n. LSTM layers
# n+1. linear layer
# n+1. output
input = tf.verify_tensor_all_finite(input, "Input not finite!")
# input shape: (batch_size, n_steps, n_input)
input = tf.transpose(input, [1, 0, 2]) # permute n_steps and batch_size
input = tf.verify_tensor_all_finite(input, "Input not finite2!")
# Reshape to prepare input to the linear layer
input = tf.reshape(input, [-1, parameters['n_input']]) # (n_steps*batch_size, n_input)
input = tf.verify_tensor_all_finite(input, "Input not finite3!")
# 1. layer, linear activation for each batch and step.
if (model.has_key('input_weights')):
input = tf.matmul(input, model['input_weights']) + model['input_bias']
# input = tf.nn.dropout(input, model['keep_prob'])
# Split data because rnn cell needs a list of inputs for the RNN inner loop,
# that is, a n_steps length list of tensors shaped: (batch_size, n_inputs)
# This is not well documented, but check for yourself here: https://goo.gl/NzA5pX
input = tf.split(0, parameters['n_steps'], input) # n_steps * (batch_size, :)
initial_state = tf.verify_tensor_all_finite(initial_state, "Initial state not finite!")
# Note: States is shaped: batch_size x cell.state_size
outputs, states = rnn.rnn(model['rnn_cell'], input, initial_state=initial_state)
#outputs[-1] = tf.Print(outputs[-1], [outputs[-1]], "LSTM Output: ", summarize = 100)
lastOutput = tf.verify_tensor_all_finite(outputs[-1], "LSTM Outputs not finite!")
#lastOutput = tf.nn.dropout(lastOutput, model['keep_prob'])
# Only the last output is interesting for error back propagation and prediction.
# Note that all batches are handled together here.
raw_output = tf.matmul(lastOutput, model['output_weights']) + model['output_bias']
raw_output = tf.verify_tensor_all_finite(raw_output, "Raw output not finite!")
n_mixtures = parameters['n_mixtures']
batch_size = parameters['batch_size']
# And now, instead of just outputting the expected value, we output mixture distributions.
# The number of mixtures is intuitively the number of possible actions the target can take.
# The output is divided into triplets of n_mixtures mixture parameters for the 2 absolute position coordinates.
output = softmax_mixtures(raw_output, n_mixtures, batch_size)
#output = tf.Print(output, [output], "Output: ", summarize = 100)
output = tf.verify_tensor_all_finite(output, "Final output not finite!")
return (output, states)
# Returns the generative LSTM stack created based on the parameters.
# Processes one input at a time.
# Input shape is: 1 x (parameters['n_input'])
# State shape is: 1 x (parameters['n_input'])
示例11: Lstm_training
# 需要導入模塊: from tensorflow.models.rnn import rnn [as 別名]
# 或者: from tensorflow.models.rnn.rnn import rnn [as 別名]
def Lstm_training(self):
# define placeholder
data_in = tf.placeholder(tf.float32, shape=[None, n_step, \
n_input], name='indat')
data_out = tf.placeholder(tf.float32, shape=[None], name='outdat')
istate = tf.placeholder("float", [None, 2*self.size])
# calculate input for hidden layer
data_in = tf.reshape(data_in, [-1, n_input])
inputs = tf.matmul(data_in, self.iw) + self.ib
# lstm cell
lstm_cell = rnn_cell.BasicLSTMCell(self.size, forget_bias=0.0)
# split input of hidden layer because rnn cell needs a list of inputs
inputs = tf.split(0, n_step, inputs)
# get lstm cell output
outputs, states = rnn.rnn(lstm_cell, inputs, initial_state=istate)
# output layer
data_o = tf.matmul(outputs[-1], self.ow) + self.ob
#data_o = tf.transpose(data_o)
# loss function
loss = tf.reduce_mean(tf.square(data_o - tf.reshape(data_out, [-1])))
regularizer = tf.nn.l2_loss(self.iw) + tf.nn.l2_loss(self.ib)\
+ tf.nn.l2_loss(self.ow) + tf.nn.l2_loss(self.ob)
loss += 2e-3 * regularizer
# optimization
optimizer = tf.train.GradientDescentOptimizer(2e-3).minimize(loss)
sess.run(tf.initialize_all_variables())
for i in range(5000):
print "number of iteration: %d"%i
offset = i%60
batch_x = self.tr[batch_size*offset:batch_size*(offset+1),:]
batch_y = self.expect[batch_size*offset+30:batch_size*(offset+1)+30]
optimizer.run(feed_dict={data_in: batch_x, data_out: batch_y, istate: np.zeros((batch_size, 2*self.size))})
if i%10 == 0:
loss_pr = loss.eval(feed_dict={\
data_in: batch_x, data_out: batch_y, istate:\
np.zeros((batch_size, 2*self.size))})
print "step %d, training accuracy %g"%(i, loss_pr)