當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.mod方法代碼示例

本文整理匯總了Python中tensorflow.mod方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.mod方法的具體用法?Python tensorflow.mod怎麽用?Python tensorflow.mod使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.mod方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: noise_from_step_num

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mod [as 別名]
def noise_from_step_num():
  """Quantization noise equal to (phi * (step_num + 1)) mod 1.0.

  Not using random_uniform here due to a problem on TPU in that random seeds
  are not respected, which may cause the parameters on different replicas
  to go out-of-sync.

  Returns:
    a float32 scalar
  """
  step = tf.to_int32(tf.train.get_or_create_global_step()) + 1
  phi = ((5 ** 0.5) - 1) / 2
  # Naive computation tf.mod(phi * step, 1.0) in float32 would be disastrous
  # due to loss of precision when the step number gets large.
  # Computation in doubles does not work on TPU, so we use this complicated
  # alternative computation which does not suffer from these roundoff errors.
  ret = 0.0
  for i in range(30):
    ret += (((phi * (2 ** i)) % 1.0)  # double-precision computation in python
            * tf.to_float(tf.mod(step // (2 ** i), 2)))
  return tf.mod(ret, 1.0) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:23,代碼來源:quantization.py

示例2: _finish

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mod [as 別名]
def _finish(self, update_ops, name_scope):
    """Updates beta_power variables every n batches and incrs counter."""
    iter_ = self._get_iter_variable()
    beta1_power, beta2_power = self._get_beta_accumulators()
    with tf.control_dependencies(update_ops):
      with tf.colocate_with(iter_):

        def update_beta_op():
          update_beta1 = beta1_power.assign(
              beta1_power * self._beta1_t,
              use_locking=self._use_locking)
          update_beta2 = beta2_power.assign(
              beta2_power * self._beta2_t,
              use_locking=self._use_locking)
          return tf.group(update_beta1, update_beta2)
        maybe_update_beta = tf.cond(
            tf.equal(iter_, 0), update_beta_op, tf.no_op)
        with tf.control_dependencies([maybe_update_beta]):
          update_iter = iter_.assign(tf.mod(iter_ + 1, self._n_t),
                                     use_locking=self._use_locking)
    return tf.group(
        *update_ops + [update_iter, maybe_update_beta], name=name_scope) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:24,代碼來源:multistep_optimizer.py

示例3: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mod [as 別名]
def __init__(self, position_size, hparams=None):
        EmbedderBase.__init__(self, hparams=hparams)

        dim = self._hparams.dim
        num_timescales = dim // 2
        min_timescale = self._hparams.min_timescale
        max_timescale = self._hparams.max_timescale

        positions = tf.to_float(tf.range(position_size, dtype=tf.int32))
        log_timescale_increment = (
            math.log(float(max_timescale) / float(min_timescale)) /
            (tf.to_float(num_timescales) - 1))
        inv_timescales = min_timescale * tf.exp(
            tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)
        scaled_time = tf.expand_dims(positions, 1) \
            * tf.expand_dims(inv_timescales, 0)
        signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
        signal = tf.pad(signal, [[0, 0], [0, tf.mod(dim, 2)]])
        self.signal = signal 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:21,代碼來源:position_embedders.py

示例4: add_timing_signal

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mod [as 別名]
def add_timing_signal(x, scope='', min_timescale=1.0, max_timescale=1.0e4):
        with tf.name_scope(scope, values=[x]):
            length = tf.shape(x)[1]
            channels = tf.shape(x)[2]
            position = tf.to_float(tf.range(length))
            num_timescales = channels // 2

            log_timescale_increment = (
                math.log(float(max_timescale) / float(min_timescale)) /
                (tf.to_float(num_timescales) - 1)
            )
            inv_timescales = min_timescale * tf.exp(
                tf.to_float(tf.range(num_timescales)) * -log_timescale_increment
            )

            scaled_time = (tf.expand_dims(position, 1) *
                           tf.expand_dims(inv_timescales, 0))
            signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
            signal = tf.pad(signal, [[0, 0], [0, tf.mod(channels, 2)]])
            signal = tf.reshape(signal, [1, length, channels])

            return x + signal 
開發者ID:sattree,項目名稱:gap,代碼行數:24,代碼來源:coarse_grain_model_v2.py

示例5: _position_encoding

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mod [as 別名]
def _position_encoding(position_size, dim, 
                    min_timescale=1.0,
                    max_timescale=1.0e4):
    position = tf.to_float(tf.range(position_size))
    num_timescales = dim // 2
    log_timescale_increment = (
        math.log(float(max_timescale) / float(min_timescale)) /
        (tf.to_float(num_timescales) - 1))
    inv_timescales = min_timescale * tf.exp(
        tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)
    scaled_time = tf.expand_dims(position, 1) \
        * tf.expand_dims(inv_timescales, 0)
    signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
    signal = tf.pad(signal, [[0, 0], [0, tf.mod(dim, 2)]])
    signal = tf.reshape(signal, [1, position_size, dim])

    return signal 
開發者ID:yyht,項目名稱:BERT,代碼行數:19,代碼來源:re_augument_utils.py

示例6: tf_angle2class

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mod [as 別名]
def tf_angle2class(angle):
    ''' Convert continuous angle to discrete class and residual.
        num_class: int scalar, number of classes N

    Input:
        angle: rad scalar, from 0-2pi (or -pi~pi), class center at
            0, 1*(2pi/N), 2*(2pi/N) ...  (N-1)*(2pi/N)
    Output:
        class_id, int, among 0,1,...,N-1
        residual_angle: float, a number such that
            class*(2pi/N) + residual_angle = angle
    '''
    twopi = tf.constant(2.0 * np.pi)
    angle = tf.mod(angle, twopi)
    angle_per_class = twopi / tf.to_float(cfg.model.angles.num_bins)
    shifted_angle = tf.mod(angle + angle_per_class / 2.0, twopi)
    class_id = tf.to_int32(shifted_angle / angle_per_class)
    residual_angle = shifted_angle - (tf.to_float(class_id) * angle_per_class + angle_per_class / 2.0)
    return class_id[:, 0], residual_angle 
開發者ID:grossjohannes,項目名稱:AlignNet-3D,代碼行數:21,代碼來源:tp8.py

示例7: shard

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mod [as 別名]
def shard(ds):
    """Convert a dataset to include shard, it has same effect
    with ds.shard(num_shards, index).
    """

    # TODO: allow dataset shard inside a function or dataset api
    # (e.g., map, parallel_interleave)
    num_shards, shard_id = _get_or_create_num_shards_and_shard_id()

    def filter_fn(elem_index, _):
        mod_result = tf.mod(elem_index, num_shards)
        return tf.equal(mod_result, shard_id)

    f = ds._enumerate().filter(filter_fn)
    assert f._predicate.captured_inputs[0] == num_shards
    assert f._predicate.captured_inputs[1] == shard_id
    tf.add_to_collection(SHARD_FILTER_PRED,
                         f._predicate.name)
    return f.map(lambda _, elem: elem) 
開發者ID:snuspl,項目名稱:parallax,代碼行數:21,代碼來源:shard.py

示例8: paired_permutations

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mod [as 別名]
def paired_permutations(x):
    #Ensuring the vector is flatten
    #x = tf.reshape(x, [-1])    
    size = tf.shape(x)[0]

    counter = tf.constant(0)
    m0 = tf.zeros(shape=[0, 2], dtype=x.dtype)
    cond = lambda i,m: i < size*size
    body = lambda i,m: [i+1, tf.concat([m, tf.expand_dims(tf.stack([x[tf.to_int32(tf.div(i,size))], 
                                                                    x[tf.mod(i,size)]])
                                                          , axis=0)
                                       ], axis=0, name="concat_rows")
                       ]
    _, combined_values = tf.while_loop(
        cond, body, 
        loop_vars=[counter, m0],
        shape_invariants=[counter.get_shape(), tf.TensorShape([None,None])])
    return combined_values 
開發者ID:gabrielspmoreira,項目名稱:chameleon_recsys,代碼行數:20,代碼來源:utils.py

示例9: testInt32Basic

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mod [as 別名]
def testInt32Basic(self):
    x = np.arange(1, 13, 2).reshape(1, 3, 2).astype(np.int32)
    y = np.arange(1, 7, 1).reshape(1, 3, 2).astype(np.int32)
    self._compareBoth(x, y, np.add, tf.add)
    self._compareBoth(x, y, np.subtract, tf.sub)
    self._compareBoth(x, y, np.multiply, tf.mul)
    self._compareBoth(x, y, np.true_divide, tf.truediv)
    self._compareBoth(x, y, np.floor_divide, tf.floordiv)
    self._compareBoth(x, y, np.mod, tf.mod)
    self._compareBoth(x, y, np.add, _ADD)
    self._compareBoth(x, y, np.subtract, _SUB)
    self._compareBoth(x, y, np.multiply, _MUL)
    self._compareBoth(x, y, np.true_divide, _TRUEDIV)
    self._compareBoth(x, y, np.floor_divide, _FLOORDIV)
    self._compareBoth(x, y, np.mod, _MOD)
    # _compareBoth tests on GPU only for floating point types, so test
    # _MOD for int32 on GPU by calling _compareGpu
    self._compareGpu(x, y, np.mod, _MOD) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:20,代碼來源:cwise_ops_test.py

示例10: flow_to_color

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mod [as 別名]
def flow_to_color(flow, mask=None, max_flow=None):
    """Converts flow to 3-channel color image.

    Args:
        flow: tensor of shape [num_batch, height, width, 2].
        mask: flow validity mask of shape [num_batch, height, width, 1].
    """
    n = 8
    num_batch, height, width, _ = tf.unstack(tf.shape(flow))
    mask = tf.ones([num_batch, height, width, 1]) if mask is None else mask
    flow_u, flow_v = tf.unstack(flow, axis=3)
    if max_flow is not None:
        max_flow = tf.maximum(max_flow, 1)
    else:
        max_flow = tf.reduce_max(tf.abs(flow * mask))
    mag = tf.sqrt(tf.reduce_sum(tf.square(flow), 3))
    angle = atan2(flow_v, flow_u)

    im_h = tf.mod(angle / (2 * np.pi) + 1.0, 1.0)
    im_s = tf.clip_by_value(mag * n / max_flow, 0, 1)
    im_v = tf.clip_by_value(n - im_s, 0, 1)
    im_hsv = tf.stack([im_h, im_s, im_v], 3)
    im = tf.image.hsv_to_rgb(im_hsv)
    return im * mask 
開發者ID:simonmeister,項目名稱:UnFlow,代碼行數:26,代碼來源:flow_util.py

示例11: position_signal

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mod [as 別名]
def position_signal(dimension: int, length: tf.Tensor) -> tf.Tensor:
    # Code simplified and copied from github.com/tensorflow/tensor2tensor

    # TODO write this down on a piece of paper and understand the code and
    # compare it to the paper
    positions = tf.to_float(tf.range(length))

    num_timescales = dimension // 2

    # see: github.com/tensorflow/tensor2tensor/blob/v1.5.5/tensor2tensor/
    #      layers/common_attention.py#L425
    log_timescale_increment = math.log(1.0e4) / (num_timescales - 1)
    inv_timescales = tf.exp(tf.range(num_timescales, dtype=tf.float32)
                            * -log_timescale_increment)

    scaled_time = tf.expand_dims(positions, 1) * tf.expand_dims(
        inv_timescales, 0)

    signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
    signal = tf.pad(signal, [[0, 0], [0, tf.mod(dimension, 2)]])
    signal = tf.reshape(signal, [1, length, dimension])

    return signal 
開發者ID:ufal,項目名稱:neuralmonkey,代碼行數:25,代碼來源:transformer.py

示例12: ternary_encoder

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mod [as 別名]
def ternary_encoder(input_data):
  """Encoding and compressing the signs """
  a = tf.sign(input_data) # -1, 0, 1
  a = tf.add(a,1) # shift -1,0,1 to 0,1,2 (2'b00,2'b01,2'b10)
  a = tf.reshape(a,[-1])
  pad_size = 4 - tf.mod(tf.size(a), 4)
  pad = tf.range(0.0, pad_size)
  a = tf.concat([a, pad], 0)
  a_split1, a_split2, a_split3, a_split4 = tf.split(a,4) # assume the size is dividable by 4

  # encode 4 grads into 1 Byte
  sum_1 = tf.add(a_split1, a_split2*4)
  sum_2 = tf.add(a_split3*16, a_split4*64)
  sum_all = tf.add(sum_1, sum_2)
  encoded = tf.cast(sum_all, tf.uint8)
  return encoded 
開發者ID:wenwei202,項目名稱:terngrad,代碼行數:18,代碼來源:bingrad_common.py

示例13: ternary_decoder

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mod [as 別名]
def ternary_decoder(encoded_data, scaler, shape):
  """Decoding the signs to float format """
  a = tf.cast(encoded_data, tf.int32)
  a_split1 = tf.mod(a,4)
  a_split2 = tf.to_int32(tf.mod(a/4,4))
  a_split3 = tf.to_int32(tf.mod(a/16,4))
  a_split4 = tf.to_int32(tf.mod(a/64,4))
  a = tf.concat([a_split1, a_split2, a_split3, a_split4], 0)
  real_size = tf.reduce_prod(shape)
  a = tf.to_float(a)
  a = tf.gather(a, tf.range(0,real_size))

  a = tf.reshape(a, shape)
  a = tf.subtract(a,1)
  decoded = a*scaler
  return decoded 
開發者ID:wenwei202,項目名稱:terngrad,代碼行數:18,代碼來源:bingrad_common.py

示例14: sample_k_fids_for_pid

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mod [as 別名]
def sample_k_fids_for_pid(pid, all_fids, all_pids, batch_k):
    """ Given a PID, select K FIDs of that specific PID. """
    possible_fids = tf.boolean_mask(all_fids, tf.equal(all_pids, pid))

    # The following simply uses a subset of K of the possible FIDs
    # if more than, or exactly K are available. Otherwise, we first
    # create a padded list of indices which contain a multiple of the
    # original FID count such that all of them will be sampled equally likely.
    count = tf.shape(possible_fids)[0]
    padded_count = tf.cast(tf.ceil(batch_k / tf.cast(count, tf.float32)), tf.int32) * count
    full_range = tf.mod(tf.range(padded_count), count)

    # Sampling is always performed by shuffling and taking the first k.
    shuffled = tf.random_shuffle(full_range)
    selected_fids = tf.gather(possible_fids, shuffled[:batch_k])

    return selected_fids, tf.fill([batch_k], pid) 
開發者ID:VisualComputingInstitute,項目名稱:triplet-reid,代碼行數:19,代碼來源:train.py

示例15: __call__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import mod [as 別名]
def __call__(self,
                 input_data,
                 input_mask):
        """call sinusoid position layer"""
        with tf.variable_scope(self.scope, reuse=tf.AUTO_REUSE), tf.device(self.device_spec):
            input_shape = tf.shape(input_data)
            length = input_shape[-2]
            channel = input_shape[-1]
            num_time_scale = channel // 2
            position = tf.to_float(tf.range(length))
            log_time_scale = tf.log(float(self.max_time_scale) / float(self.min_time_scale)) / (tf.to_float(num_time_scale) - 1)
            inv_time_scale = float(self.min_time_scale) * tf.exp(-1.0 * log_time_scale * tf.to_float(tf.range(num_time_scale)))
            scaled_time = tf.expand_dims(position, axis=1) * tf.expand_dims(inv_time_scale, axis=0)
            signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
            signal = tf.pad(signal, paddings=[[0, 0], [0, tf.mod(channel, 2)]])
            signal = tf.reshape(signal, shape=[1, length, channel])
            
            output_signal = input_data + signal
            output_mask = input_mask
        
        return output_signal, output_mask 
開發者ID:stevezheng23,項目名稱:reading_comprehension_tf,代碼行數:23,代碼來源:position.py


注:本文中的tensorflow.mod方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。