當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.meshgrid方法代碼示例

本文整理匯總了Python中tensorflow.meshgrid方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.meshgrid方法的具體用法?Python tensorflow.meshgrid怎麽用?Python tensorflow.meshgrid使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.meshgrid方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: encode_coordinates_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import meshgrid [as 別名]
def encode_coordinates_fn(self, net):
    """Adds one-hot encoding of coordinates to different views in the networks.

    For each "pixel" of a feature map it adds a onehot encoded x and y
    coordinates.

    Args:
      net: a tensor of shape=[batch_size, height, width, num_features]

    Returns:
      a tensor with the same height and width, but altered feature_size.
    """
    mparams = self._mparams['encode_coordinates_fn']
    if mparams.enabled:
      batch_size, h, w, _ = net.shape.as_list()
      x, y = tf.meshgrid(tf.range(w), tf.range(h))
      w_loc = slim.one_hot_encoding(x, num_classes=w)
      h_loc = slim.one_hot_encoding(y, num_classes=h)
      loc = tf.concat([h_loc, w_loc], 2)
      loc = tf.tile(tf.expand_dims(loc, 0), [batch_size, 1, 1, 1])
      return tf.concat([net, loc], 3)
    else:
      return net 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:25,代碼來源:model.py

示例2: yolo_boxes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import meshgrid [as 別名]
def yolo_boxes(pred, anchors, num_classes, training=True):
    # pred: (batch_size, grid, grid, anchors, (x, y, w, h, obj, ...classes))
    grid_size = tf.shape(pred)[1:3][::-1]
    grid_y, grid_x = tf.shape(pred)[1], tf.shape(pred)[2]

    box_xy, box_wh, objectness, class_probs = tf.split(pred, (2, 2, 1, num_classes), axis=-1)
    box_xy = tf.sigmoid(box_xy)

    objectness = tf.sigmoid(objectness)
    class_probs = tf.nn.softmax(class_probs)
    pred_box = tf.concat((box_xy, box_wh), axis=-1)  # original xywh for loss

    # !!! grid[x][y] == (y, x)
    grid = tf.meshgrid(tf.range(grid_x), tf.range(grid_y))
    grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2)  # [gx, gy, 1, 2]

    box_xy = (box_xy + tf.cast(grid, tf.float32)) / tf.cast(grid_size, tf.float32)
    box_wh = tf.exp(box_wh) * anchors

    box_x1y1 = box_xy - box_wh / 2
    box_x2y2 = box_xy + box_wh / 2
    bbox = tf.concat([box_x1y1, box_x2y2], axis=-1)

    return bbox, objectness, class_probs, pred_box 
開發者ID:akkaze,項目名稱:tf2-yolo3,代碼行數:26,代碼來源:models.py

示例3: get_cells

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import meshgrid [as 別名]
def get_cells(self):
    """Returns the locations of all grid points in box.

    Suppose start is -10 Angstrom, stop is 10 Angstrom, nbr_cutoff is 1.
    Then would return a list of length 20^3 whose entries would be
    [(-10, -10, -10), (-10, -10, -9), ..., (9, 9, 9)]

    Returns
    -------
    cells: tf.Tensor
      (n_cells, ndim) shape.
    """
    start, stop, nbr_cutoff = self.start, self.stop, self.nbr_cutoff
    mesh_args = [tf.range(start, stop, nbr_cutoff) for _ in range(self.ndim)]
    return tf.cast(
        tf.reshape(
            tf.transpose(tf.stack(tf.meshgrid(*mesh_args))),
            (self.n_cells, self.ndim)), tf.float32) 
開發者ID:deepchem,項目名稱:deepchem,代碼行數:20,代碼來源:layers.py

示例4: get_cells

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import meshgrid [as 別名]
def get_cells(self):
    """Returns the locations of all grid points in box.

    Suppose start is -10 Angstrom, stop is 10 Angstrom, nbr_cutoff is 1.
    Then would return a list of length 20^3 whose entries would be
    [(-10, -10, -10), (-10, -10, -9), ..., (9, 9, 9)]

    Returns
    -------
    cells: tf.Tensor
      (n_cells, ndim) shape.
    """
    start, stop, nbr_cutoff = self.start, self.stop, self.nbr_cutoff
    mesh_args = [tf.range(start, stop, nbr_cutoff) for _ in range(self.ndim)]
    return tf.to_float(
        tf.reshape(
            tf.transpose(tf.stack(tf.meshgrid(*mesh_args))),
            (self.n_cells, self.ndim))) 
開發者ID:simonfqy,項目名稱:PADME,代碼行數:20,代碼來源:layers.py

示例5: generate_anchors_pre

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import meshgrid [as 別名]
def generate_anchors_pre(rpn_cls_score, feat_stride, anchor_scales=(8, 16, 32), anchor_ratios=(0.5, 1, 2)):
    """ A wrapper function to generate anchors given different scales
      Also return the number of anchors in variable 'length'
    """
    height, width = rpn_cls_score.shape[1:3]
    anchors = generate_anchors(ratios=np.array(anchor_ratios), scales=np.array(anchor_scales))
    A = anchors.shape[0]
    shift_x = np.arange(0, width) * feat_stride
    shift_y = np.arange(0, height) * feat_stride
    shift_x, shift_y = np.meshgrid(shift_x, shift_y)
    shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose()
    K = shifts.shape[0]
    # width changes faster, so here it is H, W, C
    anchors = anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2))
    anchors = anchors.reshape((K * A, 4)).astype(np.float32, copy=False)
    length = np.int32(anchors.shape[0])

    return anchors, length 
開發者ID:wanjinchang,項目名稱:SSH-TensorFlow,代碼行數:20,代碼來源:snippets.py

示例6: generate_anchors_pre_tf

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import meshgrid [as 別名]
def generate_anchors_pre_tf(rpn_cls_score, feat_stride=16, anchor_scales=(8, 16, 32), anchor_ratios=(0.5, 1, 2)):
    height = tf.shape(rpn_cls_score)[1]
    width = tf.shape(rpn_cls_score)[2]
    shift_x = tf.range(width) * feat_stride  # width
    shift_y = tf.range(height) * feat_stride  # height
    shift_x, shift_y = tf.meshgrid(shift_x, shift_y)
    sx = tf.reshape(shift_x, shape=(-1,))
    sy = tf.reshape(shift_y, shape=(-1,))
    shifts = tf.transpose(tf.stack([sx, sy, sx, sy]))
    K = tf.multiply(width, height)
    shifts = tf.transpose(tf.reshape(shifts, shape=[1, K, 4]), perm=(1, 0, 2))

    anchors = generate_anchors(ratios=np.array(anchor_ratios), scales=np.array(anchor_scales))
    A = anchors.shape[0]
    anchor_constant = tf.constant(anchors.reshape((1, A, 4)), dtype=tf.int32)

    length = K * A
    anchors_tf = tf.reshape(tf.add(anchor_constant, shifts), shape=(length, 4))

    return tf.cast(anchors_tf, dtype=tf.float32), length 
開發者ID:wanjinchang,項目名稱:SSH-TensorFlow,代碼行數:22,代碼來源:snippets.py

示例7: _multi_kmax_context_concat

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import meshgrid [as 別名]
def _multi_kmax_context_concat(inputs, top_k, poses):
	x, context_input = inputs
	idxes, topk_vs = list(), list()
	for p in poses:
		val, idx = tf.nn.top_k(tf.slice(x, [0,0,0], [-1,-1, p]), k=top_k, sorted=True, name=None)
		topk_vs.append(val)
		idxes.append(idx)
	concat_topk_max = tf.concat(topk_vs, -1, name='concat_val')
	concat_topk_idx = tf.concat(idxes, -1, name='concat_idx')
	# hack that requires the context to have the same shape as similarity matrices
	# https://stackoverflow.com/questions/41897212/how-to-sort-a-multi-dimensional-tensor-using-the-returned-indices-of-tf-nn-top-k
	shape = tf.shape(x)
	mg = tf.meshgrid(*[tf.range(d) for d in (tf.unstack(shape[:(x.get_shape().ndims - 1)]) + [top_k*len(poses)])], indexing='ij')
	val_contexts = tf.gather_nd(context_input, tf.stack(mg[:-1] + [concat_topk_idx], axis=-1))
	return tf.concat([concat_topk_max, val_contexts], axis=-1)
	# return backend.concatenate([concat_topk_max, val_contexts]) 
開發者ID:yyht,項目名稱:BERT,代碼行數:18,代碼來源:drmm_utils.py

示例8: enum_ratios_and_thetas

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import meshgrid [as 別名]
def enum_ratios_and_thetas(anchors, anchor_ratios, anchor_angles):
    '''
    ratio = h /w
    :param anchors:
    :param anchor_ratios:
    :return:
    '''
    ws = anchors[:, 2]  # for base anchor: w == h
    hs = anchors[:, 3]
    anchor_angles = tf.constant(anchor_angles, tf.float32)
    sqrt_ratios = tf.sqrt(tf.constant(anchor_ratios))

    ws = tf.reshape(ws / sqrt_ratios[:, tf.newaxis], [-1])
    hs = tf.reshape(hs * sqrt_ratios[:, tf.newaxis], [-1])

    ws, _ = tf.meshgrid(ws, anchor_angles)
    hs, anchor_angles = tf.meshgrid(hs, anchor_angles)

    anchor_angles = tf.reshape(anchor_angles, [-1, 1])
    ws = tf.reshape(ws, [-1, 1])
    hs = tf.reshape(hs, [-1, 1])

    return ws, hs, anchor_angles 
開發者ID:Thinklab-SJTU,項目名稱:R3Det_Tensorflow,代碼行數:25,代碼來源:generate_rotate_anchors.py

示例9: _perspective_correct_barycentrics

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import meshgrid [as 別名]
def _perspective_correct_barycentrics(vertices_per_pixel, model_to_eye_matrix,
                                      perspective_matrix, image_size_float):
  """Creates the pixels grid and computes barycentrics."""
  # Construct the pixel grid with half-integer pixel centers.
  width = image_size_float[1]
  height = image_size_float[0]
  px = tf.linspace(0.5, width - 0.5, num=int(width))
  py = tf.linspace(0.5, height - 0.5, num=int(height))
  xv, yv = tf.meshgrid(px, py)
  pixel_position = tf.stack((xv, yv), axis=-1)

  return glm.perspective_correct_barycentrics(vertices_per_pixel,
                                              pixel_position,
                                              model_to_eye_matrix,
                                              perspective_matrix,
                                              (width, height)) 
開發者ID:tensorflow,項目名稱:graphics,代碼行數:18,代碼來源:triangle_rasterizer.py

示例10: _grid

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import meshgrid [as 別名]
def _grid(starts, stops, nums):
  """Generates a M-D uniform axis-aligned grid.

  Warning:
    This op is not differentiable. Indeed, the gradient of tf.linspace and
    tf.meshgrid are currently not defined.

  Args:
    starts: A tensor of shape `[M]` representing the start points for each
      dimension.
    stops: A tensor of shape `[M]` representing the end points for each
      dimension.
    nums: A tensor of shape `[M]` representing the number of subdivisions for
      each dimension.

  Returns:
    A tensor of shape `[nums[0], ..., nums[M-1], M]` containing an M-D uniform
      grid.
  """
  params = [tf.unstack(tensor) for tensor in [starts, stops, nums]]
  layout = [tf.linspace(*param) for param in zip(*params)]
  return tf.stack(tf.meshgrid(*layout, indexing="ij"), axis=-1) 
開發者ID:tensorflow,項目名稱:graphics,代碼行數:24,代碼來源:grid.py

示例11: volshape_to_meshgrid

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import meshgrid [as 別名]
def volshape_to_meshgrid(volshape, **kwargs):
    """
    compute Tensor meshgrid from a volume size

    Parameters:
        volshape: the volume size
        **args: "name" (optional)

    Returns:
        A list of Tensors

    See Also:
        tf.meshgrid, meshgrid, ndgrid, volshape_to_ndgrid
    """
    
    isint = [float(d).is_integer() for d in volshape]
    if not all(isint):
        raise ValueError("volshape needs to be a list of integers")

    linvec = [tf.range(0, d) for d in volshape]
    return meshgrid(*linvec, **kwargs) 
開發者ID:adalca,項目名稱:neuron,代碼行數:23,代碼來源:utils.py

示例12: K

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import meshgrid [as 別名]
def K(self, X, X2=None, presliced=False):
        if not presliced:
            X, X2 = self._slice(X, X2)
        if X2 is None:
            X2 = X
        pi = np.pi
        # exp term; x^T * [1 rho; rho 1] * x, x=[x,-x']^T
        XX, XX2 = tf.meshgrid(X, X2, indexing='ij')
        R = tf.square(XX) + tf.square(XX2) - 2.0*self.correlation*XX*XX2
        exp_term = tf.exp(-2.0 * pi**2 * tf.square(self.lengthscale) * R)
        
        # phi cosine terms
        mu = self.frequency
        phi1 = tf.stack([tf.cos(2*pi*mu[0]*X) + tf.cos(2*pi*mu[1]*X),
                         tf.sin(2*pi*mu[0]*X) + tf.sin(2*pi*mu[1]*X)], axis=1)
        phi2 = tf.stack([tf.cos(2*pi*mu[0]*X2) + tf.cos(2*pi*mu[1]*X2),
                         tf.sin(2*pi*mu[0]*X2) + tf.sin(2*pi*mu[1]*X2)], axis=1)
        phi = tf.matmul(tf.squeeze(phi1), tf.squeeze(phi2), transpose_b=True)
        
        return self.variance * exp_term * phi 
開發者ID:sremes,項目名稱:nssm-gp,代碼行數:22,代碼來源:spectral_kernels.py

示例13: roll_sequence

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import meshgrid [as 別名]
def roll_sequence(tensor, offsets):
  """Shifts sequences by an offset.

  Args:
    tensor: A ``tf.Tensor`` of shape :math:`[B, T, ...]`.
    offsets : The offset of each sequence of shape :math:`[B]`.

  Returns:
    A ``tf.Tensor`` with the same shape as :obj:`tensor` and with sequences
    shifted by :obj:`offsets`.
  """
  batch_size = tf.shape(tensor)[0]
  time = tf.shape(tensor)[1]
  cols, rows = tf.meshgrid(tf.range(time), tf.range(batch_size))
  cols -= tf.expand_dims(offsets, 1)
  cols %= time
  indices = tf.stack([rows, cols], axis=-1)
  return tf.gather_nd(tensor, indices) 
開發者ID:OpenNMT,項目名稱:OpenNMT-tf,代碼行數:20,代碼來源:tensor.py

示例14: meshgrid

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import meshgrid [as 別名]
def meshgrid(self, height, width, ones_flag=None):
        # get the mesh-grid in a special area(-1,1)
        # output:
        #   @shape --> 2,H*W
        #   @explanation --> (0,:) means all x-coordinate in a mesh
        #                    (1,:) means all y-coordinate in a mesh
        with tf.variable_scope('meshgrid'):
            y_linspace = tf.linspace(-1., 1., height)
            x_linspace = tf.linspace(-1., 1., width)
            x_coordinates, y_coordinates = tf.meshgrid(x_linspace, y_linspace)
            x_coordinates = tf.reshape(x_coordinates, shape=[-1])
            y_coordinates = tf.reshape(y_coordinates, shape=[-1])
            if ones_flag is None:
                indices_grid = tf.stack([x_coordinates, y_coordinates], axis=0)
            else:
                indices_grid = tf.stack([x_coordinates, y_coordinates, tf.ones_like(x_coordinates)], axis=0)
            return indices_grid 
開發者ID:BlueWinters,項目名稱:DeepWarp,代碼行數:19,代碼來源:model.py

示例15: CalculateReceptiveBoxes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import meshgrid [as 別名]
def CalculateReceptiveBoxes(height, width, rf, stride, padding):
  """Calculate receptive boxes for each feature point.

  Args:
    height: The height of feature map.
    width: The width of feature map.
    rf: The receptive field size.
    stride: The effective stride between two adjacent feature points.
    padding: The effective padding size.
  Returns:
    rf_boxes: [N, 4] receptive boxes tensor. Here N equals to height x width.
    Each box is represented by [ymin, xmin, ymax, xmax].
  """
  x, y = tf.meshgrid(tf.range(width), tf.range(height))
  coordinates = tf.reshape(tf.stack([y, x], axis=2), [-1, 2])
  # [y,x,y,x]
  point_boxes = tf.to_float(tf.concat([coordinates, coordinates], 1))
  bias = [-padding, -padding, -padding + rf - 1, -padding + rf - 1]
  rf_boxes = stride * point_boxes + bias
  return rf_boxes 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:22,代碼來源:feature_extractor.py


注:本文中的tensorflow.meshgrid方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。