本文整理匯總了Python中tensorflow.merge_all_summaries方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.merge_all_summaries方法的具體用法?Python tensorflow.merge_all_summaries怎麽用?Python tensorflow.merge_all_summaries使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.merge_all_summaries方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: train
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import merge_all_summaries [as 別名]
def train(self):
self.train_op = self.optim.minimize(self.loss, global_step=self.global_step)
self.writer = tf.train.SummaryWriter("./logs/D_pretrained", self.sess.graph)
self.summary_op = tf.merge_all_summaries()
tf.initialize_all_variables().run()
self.saver = tf.train.Saver(var_list=self.D_params_dict, max_to_keep=self.max_to_keep)
count = 0
for idx in range(self.max_iter//3000):
self.save(self.checkpoint_dir, count)
self.evaluate('test', count)
self.evaluate('train', count)
for k in tqdm(range(3000)):
right_images, right_text, _ = self.dataset.sequential_sample(self.batch_size)
right_length = np.sum((right_text!=self.NOT)+0, 1)
fake_images, fake_text, _ = self.negative_dataset.sequential_sample(self.batch_size)
fake_length = np.sum((fake_text!=self.NOT)+0, 1)
wrong_text = self.dataset.get_wrong_text(self.batch_size)
wrong_length = np.sum((wrong_text!=self.NOT)+0, 1)
feed_dict = {self.right_images:right_images, self.right_text:right_text, self.right_length:right_length,
self.fake_images:fake_images, self.fake_text:fake_text, self.fake_length:fake_length,
self.wrong_images:right_images, self.wrong_text:wrong_text, self.wrong_length:wrong_length}
_, loss, summary_str = self.sess.run([self.train_op, self.loss, self.summary_op], feed_dict)
self.writer.add_summary(summary_str, count)
count += 1
示例2: setup_summaries
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import merge_all_summaries [as 別名]
def setup_summaries(self):
episode_reward = tf.Variable(0.)
s1 = tf.scalar_summary("Episode Reward " + str(self.actor_id), episode_reward)
if self.alg_type == "a3c":
summary_vars = [episode_reward]
else:
episode_ave_max_q = tf.Variable(0.)
s2 = tf.scalar_summary("Max Q Value " + str(self.actor_id), episode_ave_max_q)
logged_epsilon = tf.Variable(0.)
s3 = tf.scalar_summary("Epsilon " + str(self.actor_id), logged_epsilon)
summary_vars = [episode_reward, episode_ave_max_q, logged_epsilon]
summary_placeholders = [tf.placeholder("float") for _ in range(len(summary_vars))]
update_ops = [summary_vars[i].assign(summary_placeholders[i]) for i in range(len(summary_vars))]
with tf.control_dependencies(update_ops):
summary_ops = tf.merge_all_summaries()
return summary_placeholders, update_ops, summary_ops
示例3: init_summaries
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import merge_all_summaries [as 別名]
def init_summaries(self, config, grad_norm=None):
summdir = config.dir("summary_dir", "summaries")
model = config.string("model")
summdir += model + "/"
tf.gfile.MakeDirs(summdir)
summary_writer = tf.summary.FileWriter(summdir, self.session.graph)
summary_op = None
summary_op_test = None
if config.bool("write_summaries", True):
if self.train_network is not None:
train_summs = self.train_network.summaries
if grad_norm is not None:
grad_norm_summary = tf.summary.scalar("grad_norm", grad_norm)
train_summs.append(grad_norm_summary)
# better do not merge ALL summaries, since otherwise we get summaries from different networks
# and might execute (parts of) the test network while training
# self.summary_op = tf.merge_all_summaries()
if len(train_summs) > 0:
summary_op = tf.summary.merge(self.train_network.summaries)
if self.test_network is not None and len(self.test_network.summaries) > 0:
summary_op_test = tf.summary.merge(self.test_network.summaries)
return summary_writer, summary_op, summary_op_test
示例4: _add_train_op
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import merge_all_summaries [as 別名]
def _add_train_op(self):
params = self._params
self._lr_rate = tf.maximum(
params.min_lr,
tf.train.exponential_decay(params.lr, self._global_step, 30000, 0.98))
tvars = tf.trainable_variables()
# use reserved gpu for gradient computation
with tf.device(self._get_gpu(self._num_gpus-1)):
grads, global_norm = tf.clip_by_global_norm(
tf.gradients(self._loss, tvars), params.max_grad_norm)
tf.scalar_summary('global_norm', global_norm)
optimizer = tf.train.AdamOptimizer(self._lr_rate)
tf.scalar_summary('learning rate', self._lr_rate)
with tf.device(self._next_device()):
self._train_op = optimizer.apply_gradients(
zip(grads, tvars), global_step=self._global_step, name='train_step')
self._summaries = tf.merge_all_summaries()
return self._train_op, self._loss,
示例5: _init_summaries
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import merge_all_summaries [as 別名]
def _init_summaries(self):
if self.is_train:
logdir = os.path.join(SUMMARY_PATH, self.log_name, 'train')
self.summary_writer = tf.summary.FileWriter(logdir)
self.summary_writer_by_points = [tf.summary.FileWriter(os.path.join(logdir, 'point_%02d' % i))
for i in range(16)]
tf.scalar_summary('Average euclidean distance', self.euclidean_dist, collections = [KEY_SUMMARIES])
for i in range(16):
tf.scalar_summary('Joint euclidean distance', self.euclidean_dist_per_joint[i],
collections = [KEY_SUMMARIES_PER_JOINT[i]])
self.create_summary_from_weights()
self.ALL_SUMMARIES = tf.merge_all_summaries(KEY_SUMMARIES)
self.SUMMARIES_PER_JOINT = [tf.merge_all_summaries(KEY_SUMMARIES_PER_JOINT[i]) for i in range(16)]
else:
logdir = os.path.join(SUMMARY_PATH, self.log_name, 'test')
self.summary_writer = tf.summary.FileWriter(logdir)
示例6: testMergeAllSummaries
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import merge_all_summaries [as 別名]
def testMergeAllSummaries(self):
with tf.Graph().as_default():
const = tf.constant(10.0)
summ1 = tf.summary.histogram("h", const)
summ2 = tf.summary.scalar("o", const, collections=["foo_key"])
summ3 = tf.summary.scalar("c", const)
merge = tf.summary.merge_all()
self.assertEqual("MergeSummary", merge.op.type)
self.assertEqual(2, len(merge.op.inputs))
self.assertEqual(summ1, merge.op.inputs[0])
self.assertEqual(summ3, merge.op.inputs[1])
merge = tf.merge_all_summaries("foo_key")
self.assertEqual("MergeSummary", merge.op.type)
self.assertEqual(1, len(merge.op.inputs))
self.assertEqual(summ2, merge.op.inputs[0])
self.assertTrue(tf.merge_all_summaries("bar_key") is None)
示例7: build_summaries
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import merge_all_summaries [as 別名]
def build_summaries():
episode_reward = tf.Variable(0.)
scalar_summary("Reward", episode_reward)
episode_ave_max_q = tf.Variable(0.)
scalar_summary("Qmax Value", episode_ave_max_q)
logged_epsilon = tf.Variable(0.)
scalar_summary("Epsilon", logged_epsilon)
# Threads shouldn't modify the main graph, so we use placeholders
# to assign the value of every summary (instead of using assign method
# in every thread, that would keep creating new ops in the graph)
summary_vars = [episode_reward, episode_ave_max_q, logged_epsilon]
summary_placeholders = [tf.placeholder("float")
for i in range(len(summary_vars))]
assign_ops = [summary_vars[i].assign(summary_placeholders[i])
for i in range(len(summary_vars))]
summary_op = merge_all_summaries()
return summary_placeholders, assign_ops, summary_op
示例8: init_summaries
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import merge_all_summaries [as 別名]
def init_summaries(self, config, grad_norm=None):
summdir = config.dir("summary_dir", "summaries")
model = config.str("model")
summdir += model + "/"
tf.gfile.MakeDirs(summdir)
summary_writer = tf.summary.FileWriter(summdir, self.session.graph)
summary_op = None
summary_op_test = None
if config.bool("write_summaries", True):
if self.train_network is not None and len(self.train_network.summaries) > 0:
# better do not merge ALL summaries, since otherwise we get summaries from different networks
# and might execute (parts of) the test network while training
# self.summary_op = tf.merge_all_summaries()
# atm we only collect summaries from the train network
if grad_norm is None:
summary_op = tf.summary.merge(self.train_network.summaries)
else:
#grad_norm = tf.Print(grad_norm, [grad_norm], "grad_norm")
grad_norm_summary = tf.summary.scalar("grad_norm", grad_norm)
summary_op = tf.summary.merge(self.train_network.summaries + [grad_norm_summary])
if self.test_network is not None and len(self.test_network.summaries) > 0:
summary_op_test = tf.summary.merge(self.test_network.summaries)
return summary_writer, summary_op, summary_op_test
示例9: init_summaries
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import merge_all_summaries [as 別名]
def init_summaries(self, config, grad_norm=None):
summdir = config.dir("summary_dir", "summaries")
model = config.string("model")
summdir += model + "/"
tf.gfile.MakeDirs(summdir)
summary_writer = None
summary_op = None
summary_op_test = None
if config.bool("write_summaries", True):
summary_writer = tf.summary.FileWriter(summdir, self.session.graph)
if self.train_network is not None:
train_summs = self.train_network.summaries
if grad_norm is not None:
grad_norm_summary = tf.summary.scalar("grad_norm", grad_norm)
train_summs.append(grad_norm_summary)
# better do not merge ALL summaries, since otherwise we get summaries from different networks
# and might execute (parts of) the test network while training
# self.summary_op = tf.merge_all_summaries()
if len(train_summs) > 0:
summary_op = tf.summary.merge(train_summs)
if self.test_network is not None and len(self.test_network.summaries) > 0:
summary_op_test = tf.summary.merge(self.test_network.summaries)
return summary_writer, summary_op, summary_op_test
示例10: initialize_graph
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import merge_all_summaries [as 別名]
def initialize_graph(self, input_dim):
self.input_dim = input_dim
self._setup_base_graph()
with self.graph.as_default():
self.sess = tf.Session()
self.init_op = tf.initialize_all_variables()
self.summary = tf.merge_all_summaries()
self.sess.run(self.init_op)
self.initialized = True
示例11: summary
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import merge_all_summaries [as 別名]
def summary(self):
if self.__summary is None:
self.__summary = tf.merge_all_summaries(key='summaries')
return self.__summary
示例12: initialize
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import merge_all_summaries [as 別名]
def initialize(self, log_dir="./logs"):
self.merged_sum = tf.merge_all_summaries()
self.writer = tf.train.SummaryWriter(log_dir, self.sess.graph_def)
tf.initialize_all_variables().run()
self.load(self.checkpoint_dir)
start_iter = self.step.eval()
示例13: evaluate
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import merge_all_summaries [as 別名]
def evaluate(dataset):
"""Evaluate model on Dataset for a number of steps."""
with tf.Graph().as_default():
# Get images and labels from the dataset.
images, labels, _ = image_processing.inputs(dataset)
# Number of classes in the Dataset label set plus 1.
# Label 0 is reserved for an (unused) background class.
num_classes = dataset.num_classes() + 1
# Build a Graph that computes the logits predictions from the
# inference model.
logits, _ = inception.inference(images, num_classes)
# Calculate predictions.
top_1_op = tf.nn.in_top_k(logits, labels, 1)
top_5_op = tf.nn.in_top_k(logits, labels, 5)
# Restore the moving average version of the learned variables for eval.
variable_averages = tf.train.ExponentialMovingAverage(
inception.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
# Build the summary operation based on the TF collection of Summaries.
summary_op = tf.merge_all_summaries()
graph_def = tf.get_default_graph().as_graph_def()
summary_writer = tf.train.SummaryWriter(FLAGS.eval_dir,
graph_def=graph_def)
while True:
_eval_once(saver, summary_writer, top_1_op, top_5_op, summary_op)
if FLAGS.run_once:
break
time.sleep(FLAGS.eval_interval_secs)
示例14: run
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import merge_all_summaries [as 別名]
def run(self):
self.session = tf.Session()
# self.session = tf.Session(config=tf.ConfigProto(
# inter_op_parallelism_threads=1,
# intra_op_parallelism_threads=1))
if (self.actor_id==0):
#Initizlize Tensorboard summaries
self.summary_op = tf.merge_all_summaries()
self.summary_writer = tf.train.SummaryWriter(
"{}/{}".format(self.summ_base_dir, self.actor_id), self.session.graph_def)
# Initialize network parameters
g_step = utils.restore_vars(self.saver, self.session, self.game, self.alg_type, self.max_local_steps)
self.global_step.val.value = g_step
self.last_saving_step = g_step
logger.debug("T{}: Initializing shared memory...".format(self.actor_id))
self.init_shared_memory()
# Wait until actor 0 finishes initializing shared memory
self.barrier.wait()
if self.actor_id > 0:
logger.debug("T{}: Syncing with shared memory...".format(self.actor_id))
self.sync_net_with_shared_memory(self.local_network, self.learning_vars)
if self.alg_type <> "a3c":
self.sync_net_with_shared_memory(self.target_network, self.target_vars)
# Wait until all actors are ready to start
self.barrier.wait()
# Introduce a different start delay for each actor, so that they do not run in synchronism.
# This is to avoid concurrent updates of parameters as much as possible
time.sleep(0.1877 * self.actor_id)
示例15: build_graph
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import merge_all_summaries [as 別名]
def build_graph(self):
self._add_placeholders()
self._build_encoder()
self._build_decoder()
if self._params.mode != 'decode':
alpha_true, beta_true = tf.split(0, 2, self._answers)
self._global_step = tf.Variable(0, name='global_step', trainable=False)
self._loss = self._loss_multitask(self._alpha, alpha_true,
self._beta, beta_true)
if self._params.mode == 'train':
self._add_train_op()
self._summaries = tf.merge_all_summaries()
tf.logging.info('graph built...')