當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.matrix_triangular_solve方法代碼示例

本文整理匯總了Python中tensorflow.matrix_triangular_solve方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.matrix_triangular_solve方法的具體用法?Python tensorflow.matrix_triangular_solve怎麽用?Python tensorflow.matrix_triangular_solve使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.matrix_triangular_solve方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _log_prob

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_triangular_solve [as 別名]
def _log_prob(self, given):
        mean, cov_tril = (self.path_param(self.mean),
                          self.path_param(self.cov_tril))
        log_det = 2 * tf.reduce_sum(
            tf.log(tf.matrix_diag_part(cov_tril)), axis=-1)
        n_dim = tf.cast(self._n_dim, self.dtype)
        log_z = - n_dim / 2 * tf.log(
            2 * tf.constant(np.pi, dtype=self.dtype)) - log_det / 2
        # log_z.shape == batch_shape
        if self._check_numerics:
            log_z = tf.check_numerics(log_z, "log[det(Cov)]")
        # (given-mean)' Sigma^{-1} (given-mean) =
        # (g-m)' L^{-T} L^{-1} (g-m) = |x|^2, where Lx = g-m =: y.
        y = tf.expand_dims(given - mean, -1)
        L, _ = maybe_explicit_broadcast(
            cov_tril, y, 'MultivariateNormalCholesky.cov_tril',
            'expand_dims(given, -1)')
        x = tf.matrix_triangular_solve(L, y, lower=True)
        x = tf.squeeze(x, -1)
        stoc_dist = -0.5 * tf.reduce_sum(tf.square(x), axis=-1)
        return log_z + stoc_dist 
開發者ID:thu-ml,項目名稱:zhusuan,代碼行數:23,代碼來源:multivariate.py

示例2: _define_full_covariance_probs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_triangular_solve [as 別名]
def _define_full_covariance_probs(self, shard_id, shard):
    """Defines the full covariance probabilties per example in a class.

    Updates a matrix with dimension num_examples X num_classes.

    Args:
      shard_id: id of the current shard.
      shard: current data shard, 1 X num_examples X dimensions.
    """
    diff = shard - self._means
    cholesky = tf.cholesky(self._covs + self._min_var)
    log_det_covs = 2.0 * tf.reduce_sum(tf.log(tf.matrix_diag_part(cholesky)), 1)
    x_mu_cov = tf.square(
        tf.matrix_triangular_solve(
            cholesky, tf.transpose(
                diff, perm=[0, 2, 1]), lower=True))
    diag_m = tf.transpose(tf.reduce_sum(x_mu_cov, 1))
    self._probs[shard_id] = -0.5 * (
        diag_m + tf.to_float(self._dimensions) * tf.log(2 * np.pi) +
        log_det_covs) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:22,代碼來源:gmm_ops.py

示例3: log_det_kron_sum

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_triangular_solve [as 別名]
def log_det_kron_sum(L1, L2):
    """
    L1 is a list of lower triangular arrays.
    L2 is a list of lower triangular arrays.

    if S1 = kron(L1) * kron(L1).T, and S2 similarly,
    this function computes the log determinant of S1 + S2
    """
    L1_logdets = [tf.reduce_sum(tf.log(tf.square(tf.diag_part(L)))) for L in L1]
    total_size = reduce(tf.mul, [L.shape[0] for L in L1])
    N_other = [total_size / tf.shape(L)[0] for L in L1]
    L1_logdet = reduce(tf.add, [s*ld for s, ld in zip(N_other, L1_logdets)])
    LiL = [tf.matrix_triangular_solve(L, R) for L, R in zip(L1, L2)]
    eigvals = [tf.self_adjoint_eigvals(tf.matmul(mat, mat.T)) for mat in LiL]
    eigvals_kronned = kron_vec_mul([tf.reshape(e, [-1, 1]) for e in eigvals], tf.ones([1, 1], tf.float64))
    return tf.reduce_sum(tf.log(1 + eigvals_kronned)) + L1_logdet 
開發者ID:jameshensman,項目名稱:VFF,代碼行數:18,代碼來源:kronecker_ops.py

示例4: build_likelihood_terms

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_triangular_solve [as 別名]
def build_likelihood_terms(self):
        Kdiag = self.kern.Kdiag(self.X)
        Kuu = make_Kuu(self.kern, self.a, self.b, self.ms)
        sigma2 = self.likelihood.variance

        # Compute intermediate matrices
        P = self.KufKfu / sigma2 + Kuu.get()
        L = tf.cholesky(P)
        log_det_P = tf.reduce_sum(tf.log(tf.square(tf.diag_part(L))))
        c = tf.matrix_triangular_solve(L, self.KufY) / sigma2

        # compute log marginal bound
        ND = tf.cast(tf.size(self.Y), float_type)
        D = tf.cast(tf.shape(self.Y)[1], float_type)
        return (-0.5 * ND * tf.log(2 * np.pi * sigma2),
                -0.5 * D * log_det_P,
                0.5 * D * Kuu.logdet(),
                -0.5 * self.tr_YTY / sigma2,
                0.5 * tf.reduce_sum(tf.square(c)),
                -0.5 * tf.reduce_sum(Kdiag)/sigma2,
                0.5 * Kuu.trace_KiX(self.KufKfu) / sigma2) 
開發者ID:jameshensman,項目名稱:VFF,代碼行數:23,代碼來源:gpr.py

示例5: _build_predict

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_triangular_solve [as 別名]
def _build_predict(self, n_test, full_cov=False):
    with tf.name_scope("build_predict"):
      self.x_test_pl = tf.identity(
          tf.placeholder(tf.float64, [n_test, self.input_dim], name="x_test_pl")
      )

    tf.logging.info("Using pre-computed Kernel")
    self.k_data_test = self.kern.k_full(self.x_pl, self.x_test_pl)

    with tf.name_scope("build_predict"):
      a = tf.matrix_triangular_solve(self.l, self.k_data_test)
      fmean = tf.matmul(a, self.v, transpose_a=True)

      if full_cov:
        fvar = self.kern.k_full(self.x_test_pl) - tf.matmul(
            a, a, transpose_a=True)
        shape = [1, 1, self.y_pl.shape[1]]
        fvar = tf.tile(tf.expand_dims(fvar, 2), shape)
      else:
        fvar = self.kern.k_diag(self.x_test_pl) - tf.reduce_sum(tf.square(a), 0)
        fvar = tf.tile(tf.reshape(fvar, (-1, 1)), [1, self.output_y.shape[1]])

      self.fmean = fmean
      self.fvar = fvar 
開發者ID:brain-research,項目名稱:nngp,代碼行數:26,代碼來源:gpr.py

示例6: conditional_ND

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_triangular_solve [as 別名]
def conditional_ND(self, Xnew, full_cov=False):
        ## modified from GPR
        Kx = self.kern.K(self._X_mean, Xnew)
        K = self.kern.K(self._X_mean) + tf.eye(tf.shape(self._X_mean)[0], dtype=settings.float_type) * self._lik_variance
        L = tf.cholesky(K)
        A = tf.matrix_triangular_solve(L, Kx, lower=True)
        V = tf.matrix_triangular_solve(L, self._Y - self.mean_function(self._X_mean))
        fmean = tf.matmul(A, V, transpose_a=True) + self.mean_function(Xnew)
        if full_cov:
            fvar = self.kern.K(Xnew) - tf.matmul(A, A, transpose_a=True)
            shape = tf.stack([1, 1, tf.shape(self._Y)[1]])
            fvar = tf.tile(tf.expand_dims(fvar, 2), shape)
        else:
            fvar = self.kern.Kdiag(Xnew) - tf.reduce_sum(tf.square(A), 0)
            fvar = tf.tile(tf.reshape(fvar, (-1, 1)), [1, tf.shape(self._Y)[1]])
        return fmean, fvar 
開發者ID:ICL-SML,項目名稱:Doubly-Stochastic-DGP,代碼行數:18,代碼來源:layers.py

示例7: gp_conditional

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_triangular_solve [as 別名]
def gp_conditional(z, fz, x, full_cov, kernel, Kzz_chol=None):
    '''
    GP gp_conditional f(x) | f(z)==fz
    :param z: shape [n_z, n_covariates]
    :param fz: shape [n_particles, n_z]
    :param x: shape [n_x, n_covariates]
    :return: a distribution with shape [n_particles, n_x]
    '''
    n_z = int(z.shape[0])
    n_particles = tf.shape(fz)[0]

    if Kzz_chol is None:
        Kzz_chol = tf.cholesky(kernel(z, z))

    # Mean[fx|fz] = Kxz @ inv(Kzz) @ fz; Cov[fx|z] = Kxx - Kxz @ inv(Kzz) @ Kzx
    # With ill-conditioned Kzz, the inverse is often asymmetric, which
    # breaks further cholesky decomposition. We compute a symmetric one.
    Kzz_chol_inv = tf.matrix_triangular_solve(Kzz_chol, tf.eye(n_z))
    Kzz_inv = tf.matmul(tf.transpose(Kzz_chol_inv), Kzz_chol_inv)
    Kxz = kernel(x, z)  # [n_x, n_z]
    Kxziz = tf.matmul(Kxz, Kzz_inv)
    mean_fx_given_fz = tf.matmul(fz, tf.matrix_transpose(Kxziz))

    if full_cov:
        cov_fx_given_fz = kernel(x, x) - tf.matmul(Kxziz, tf.transpose(Kxz))
        cov_fx_given_fz = tf.tile(
            tf.expand_dims(tf.cholesky(cov_fx_given_fz), 0),
            [n_particles, 1, 1])
        fx_given_fz = zs.distributions.MultivariateNormalCholesky(
            mean_fx_given_fz, cov_fx_given_fz)
    else:
        # diag(AA^T) = sum(A**2, axis=-1)
        var = kernel.Kdiag(x) - \
            tf.reduce_sum(tf.matmul(
                Kxz, tf.matrix_transpose(Kzz_chol_inv)) ** 2, axis=-1)
        std = tf.sqrt(var)
        fx_given_fz = zs.distributions.Normal(
            mean=mean_fx_given_fz, std=std, group_ndims=1)
    return fx_given_fz 
開發者ID:thu-ml,項目名稱:zhusuan,代碼行數:41,代碼來源:utils.py

示例8: test_MatrixTriangularSolve

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_triangular_solve [as 別名]
def test_MatrixTriangularSolve(self):
        t = tf.matrix_triangular_solve(*self.random((2, 3, 3, 3), (2, 3, 3, 1)), adjoint=False, lower=False)
        self.check(t)
        t = tf.matrix_triangular_solve(*self.random((2, 3, 3, 3), (2, 3, 3, 1)), adjoint=True, lower=False)
        self.check(t)
        t = tf.matrix_triangular_solve(*self.random((2, 3, 3, 3), (2, 3, 3, 1)), adjoint=False, lower=True)
        self.check(t) 
開發者ID:riga,項目名稱:tfdeploy,代碼行數:9,代碼來源:ops.py

示例9: _verifySolve

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_triangular_solve [as 別名]
def _verifySolve(self, x, y, lower=True, adjoint=False, batch_dims=None, use_gpu=False):
    for np_type in [np.float32, np.float64]:
      a = x.astype(np_type)
      b = y.astype(np_type)
      # For numpy.solve we have to explicitly zero out the strictly
      # upper or lower triangle.
      if lower and a.size > 0:
        a_np = np.tril(a)
      elif a.size > 0:
        a_np = np.triu(a)
      else:
        a_np = a
      if adjoint:
        a_np = np.conj(np.transpose(a_np))

      if batch_dims is not None:
        a = np.tile(a, batch_dims + [1, 1])
        a_np = np.tile(a_np, batch_dims + [1, 1])
        b = np.tile(b, batch_dims + [1, 1])

      with self.test_session(use_gpu=use_gpu):
        tf_ans = tf.matrix_triangular_solve(a, b, lower=lower, adjoint=adjoint)
        out = tf_ans.eval()
        np_ans = np.linalg.solve(a_np, b)
        self.assertEqual(np_ans.shape, tf_ans.get_shape())
        self.assertEqual(np_ans.shape, out.shape)
        self.assertAllClose(np_ans, out) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:29,代碼來源:matrix_triangular_solve_op_test.py

示例10: _sqrt_solve

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_triangular_solve [as 別名]
def _sqrt_solve(self, rhs):
    return tf.matrix_triangular_solve(self._chol, rhs, lower=True) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:4,代碼來源:operator_pd_test.py

示例11: _batch_sqrt_solve

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_triangular_solve [as 別名]
def _batch_sqrt_solve(self, rhs):
    return tf.matrix_triangular_solve(self._chol, rhs, lower=True) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:4,代碼來源:operator_pd_test.py

示例12: _build_common_terms

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_triangular_solve [as 別名]
def _build_common_terms(self):
        Mb = tf.shape(self.Z)[0]
        # jitter = settings.numerics.jitter_level
        jitter = 1e-4
        sigma2 = self.likelihood.variance
        alpha = self.alpha

        # b is inducing points
        # f is training points
        Kfdiag = self.kern.Kdiag(self.X)
        Kbf = self.kern.K(self.Z, self.X)
        Kbb = self.kern.K(self.Z) + tf.eye(Mb, dtype=float_type) * jitter

        err = self.Y - self.mean_function(self.X)
        Lb = tf.cholesky(Kbb)
        Lbinv_Kbf = tf.matrix_triangular_solve(Lb, Kbf, lower=True)

        Qff_diag = tf.reduce_sum(tf.square(Lbinv_Kbf), axis=0)
        Dff = sigma2 + alpha * (Kfdiag - Qff_diag)
        Lbinv_Kbf_LDff = Lbinv_Kbf / tf.sqrt(Dff)
        d1 = tf.matmul(Lbinv_Kbf_LDff, tf.transpose(Lbinv_Kbf_LDff))
        D = tf.eye(Mb, dtype=float_type) + d1
        LD = tf.cholesky(D)

        Sinv_y = self.Y / tf.reshape(Dff, [self.num_data, 1])
        c = tf.matmul(Lbinv_Kbf, Sinv_y)
        LDinv_c = tf.matrix_triangular_solve(LD, c, lower=True)

        return (Kbf, Kbb, Lb, D, LD, LDinv_c, err, Dff) 
開發者ID:thangbui,項目名稱:streaming_sparse_gp,代碼行數:31,代碼來源:sgpr.py

示例13: build_predict

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_triangular_solve [as 別名]
def build_predict(self, Xnew, full_cov=False):
        """
        Compute the mean and variance of the latent function at some new points
        Xnew. 
        """
        # jitter = settings.numerics.jitter_level
        jitter = 1e-4

        # b is inducing points
        # f is training points
        # s is test points
        Kbs = self.kern.K(self.Z, Xnew)
        (Kbf, Kbb, Lb, D, LD, LDinv_c, err, Dff) = self._build_common_terms()

        Lbinv_Kbs = tf.matrix_triangular_solve(Lb, Kbs, lower=True)
        LDinv_Lbinv_Kbs = tf.matrix_triangular_solve(LD, Lbinv_Kbs, lower=True)
        mean = tf.matmul(tf.transpose(LDinv_Lbinv_Kbs), LDinv_c)

        if full_cov:
            Kss = self.kern.K(Xnew) + jitter * tf.eye(tf.shape(Xnew)[0], dtype=float_type)
            var1 = Kss
            var2 = - tf.matmul(tf.transpose(Lbinv_Kbs), Lbinv_Kbs)
            var3 = tf.matmul(tf.transpose(LDinv_Lbinv_Kbs), LDinv_Lbinv_Kbs)
            var = var1 + var2 + var3
        else:
            var1 = self.kern.Kdiag(Xnew) + jitter
            var2 = -tf.reduce_sum(tf.square(Lbinv_Kbs), 0)
            var3 = tf.reduce_sum(tf.square(LDinv_Lbinv_Kbs), 0)
            var = var1 + var2 + var3

        return mean + self.mean_function(Xnew), var 
開發者ID:thangbui,項目名稱:streaming_sparse_gp,代碼行數:33,代碼來源:sgpr.py

示例14: build_predict

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_triangular_solve [as 別名]
def build_predict(self, Xnew, full_cov=False):
        """
        Compute the mean and variance of the latent function at some new points
        Xnew. 
        """

        # jitter = settings.numerics.jitter_level
        jitter = 1e-4

        # a is old inducing points, b is new
        # f is training points
        # s is test points
        Kbs = self.kern.K(self.Z, Xnew)
        (Kbf, Kba, Kaa, Kaa_cur, La, Kbb, Lb, D, LD,
            Lbinv_Kba, LDinv_Lbinv_c, err, Qff) = self._build_common_terms()

        Lbinv_Kbs = tf.matrix_triangular_solve(Lb, Kbs, lower=True)
        LDinv_Lbinv_Kbs = tf.matrix_triangular_solve(LD, Lbinv_Kbs, lower=True)
        mean = tf.matmul(tf.transpose(LDinv_Lbinv_Kbs), LDinv_Lbinv_c)

        if full_cov:
            Kss = self.kern.K(Xnew) + jitter * tf.eye(tf.shape(Xnew)[0], dtype=float_type)
            var1 = Kss
            var2 = - tf.matmul(tf.transpose(Lbinv_Kbs), Lbinv_Kbs)
            var3 = tf.matmul(tf.transpose(LDinv_Lbinv_Kbs), LDinv_Lbinv_Kbs)
            var = var1 + var2 + var3
        else:
            var1 = self.kern.Kdiag(Xnew)
            var2 = -tf.reduce_sum(tf.square(Lbinv_Kbs), 0)
            var3 = tf.reduce_sum(tf.square(LDinv_Lbinv_Kbs), 0)
            var = var1 + var2 + var3

        return mean + self.mean_function(Xnew), var 
開發者ID:thangbui,項目名稱:streaming_sparse_gp,代碼行數:35,代碼來源:osgpr.py

示例15: _compute_cache

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_triangular_solve [as 別名]
def _compute_cache(self):
        """Compute cache."""
        # Scaled kernel
        identity = tf.eye(tf.shape(self.X)[0], dtype=config.dtype)
        kernel = self.kern.K(self.X) + identity * self.likelihood.variance
        kernel *= (self._scale ** 2)

        # Scaled target
        target = self._scale * (self.Y - self.mean_function(self.X))

        # Cholesky decomposition
        cholesky = tf.cholesky(kernel, name='gp_cholesky')
        alpha = tf.matrix_triangular_solve(cholesky, target, name='gp_alpha')

        return cholesky, alpha 
開發者ID:befelix,項目名稱:safe_learning,代碼行數:17,代碼來源:functions.py


注:本文中的tensorflow.matrix_triangular_solve方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。