當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.matrix_solve_ls方法代碼示例

本文整理匯總了Python中tensorflow.matrix_solve_ls方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.matrix_solve_ls方法的具體用法?Python tensorflow.matrix_solve_ls怎麽用?Python tensorflow.matrix_solve_ls使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.matrix_solve_ls方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: guarded_matrix_solve_ls

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve_ls [as 別名]
def guarded_matrix_solve_ls(A, b, W, condition_number_cap=1e5):
    # Solve weighted least square ||\sqrt(W)(Ax-b)||^2
    # A - BxNxD
    # b - BxNx1
    # W - BxN

    sqrt_W = tf.sqrt(tf.maximum(W, SQRT_EPS)) # BxN
    A *= tf.expand_dims(sqrt_W, axis=2) # BxNxD
    b *= tf.expand_dims(sqrt_W, axis=2) # BxNx1
    # Compute singular value, trivializing the problem when condition number is too large
    AtA = tf.matmul(a=A, b=A, transpose_a=True)
    s, _, _ = [tf.stop_gradient(u) for u in tf.svd(AtA)] # s will be BxD
    mask = tf.less(s[:, 0] / s[:, -1], condition_number_cap) # B
    A *= tf.to_float(tf.expand_dims(tf.expand_dims(mask, axis=1), axis=2)) # zero out badly conditioned data
    x = tf.matrix_solve_ls(A, b, l2_regularizer=LS_L2_REGULARIZER, fast=True) # BxDx1 
    return tf.squeeze(x, axis=2) # BxD 
開發者ID:lingxiaoli94,項目名稱:SPFN,代碼行數:18,代碼來源:geometry_utils.py

示例2: _verifySolve

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve_ls [as 別名]
def _verifySolve(self, x, y):
    for np_type in [np.float32, np.float64]:
      a = x.astype(np_type)
      b = y.astype(np_type)
      np_ans, _, _, _ = np.linalg.lstsq(a, b)
      for fast in [True, False]:
        with self.test_session():
          tf_ans = tf.matrix_solve_ls(a, b, fast=fast)
          ans = tf_ans.eval()
        self.assertEqual(np_ans.shape, tf_ans.get_shape())
        self.assertEqual(np_ans.shape, ans.shape)

        # Check residual norm.
        tf_r = b - BatchMatMul(a, ans)
        tf_r_norm = np.sum(tf_r * tf_r)
        np_r = b - BatchMatMul(a, np_ans)
        np_r_norm = np.sum(np_r * np_r)
        self.assertAllClose(np_r_norm, tf_r_norm)

        # Check solution.
        self.assertAllClose(np_ans, ans, atol=1e-5, rtol=1e-5) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:23,代碼來源:matrix_solve_ls_op_test.py

示例3: _verifyRegularized

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve_ls [as 別名]
def _verifyRegularized(self, x, y, l2_regularizer):
    for np_type in [np.float32, np.float64]:
      # Test with a single matrix.
      a = x.astype(np_type)
      b = y.astype(np_type)
      np_ans = BatchRegularizedLeastSquares(a, b, l2_regularizer)
      with self.test_session():
        # Test matrix_solve_ls on regular matrices
        tf_ans = tf.matrix_solve_ls(
            a, b, l2_regularizer=l2_regularizer, fast=True).eval()
        self.assertAllClose(np_ans, tf_ans, atol=1e-5, rtol=1e-5)

      # Test with a 2x3 batch of matrices.
      a = np.tile(x.astype(np_type), [2, 3, 1, 1])
      b = np.tile(y.astype(np_type), [2, 3, 1, 1])
      np_ans = BatchRegularizedLeastSquares(a, b, l2_regularizer)
      with self.test_session():
        tf_ans = tf.matrix_solve_ls(
            a, b, l2_regularizer=l2_regularizer, fast=True).eval()
      self.assertAllClose(np_ans, tf_ans, atol=1e-5, rtol=1e-5) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:22,代碼來源:matrix_solve_ls_op_test.py

示例4: solve_convolve

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve_ls [as 別名]
def solve_convolve(noisy, truth, final_K, excl_edges=False):
  kpad = final_K//2
  ch = noisy.get_shape().as_list()[-1]
  ch1 = truth.get_shape().as_list()[-1]
  sh = tf.shape(noisy)
  h, w = sh[1], sh[2]
  img_stack = []
  noisy = tf.pad(noisy, [[0,0],[kpad,kpad],[kpad,kpad],[0,0]])
  for i in range(final_K):
    for j in range(final_K):
      img_stack.append(noisy[:, i:h+i, j:w+j, :])
  img_stack = tf.stack(img_stack, axis=-2)
  is0 = img_stack
  if excl_edges:
    img_stack = img_stack[:, kpad:-kpad, kpad:-kpad, :]
    truth = truth[:, kpad:-kpad, kpad:-kpad]
    h = h - 2*kpad
    w = w - 2*kpad
  A = tf.reshape(img_stack, [tf.shape(img_stack)[0], h*w, final_K**2 * ch])
  b = tf.reshape(truth, [tf.shape(truth)[0], h*w, ch1])
  x_ = tf.matrix_solve_ls(A, b, fast=False)
  x = tf.reshape(x_, [tf.shape(truth)[0], final_K, final_K, ch, ch1])
  return x 
開發者ID:google,項目名稱:burst-denoising,代碼行數:25,代碼來源:tf_image.py

示例5: _curriculum

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve_ls [as 別名]
def _curriculum(config, step, loss_history, dependency_ops):
    """ Creates TF ops for maintaining and advancing the curriculum. """

    # assign appropriate curriculum increment value
    for case in switch(config['behavior']):
        if case('fixed_rate'):
            # fixed rate, always return same number
            increment = tf.constant(config['rate'], name='curriculum_increment')
        elif case('loss_threshold'):
            # return fixed increment if last loss is below threshold, zero otherwise
            increment_pred = tf.less(loss_history[-1], config['threshold'], name='curriculum_predicate')
            full_increment_func = lambda: tf.constant(config['rate'], name='full_curriculum_increment')
            zero_increment_func = lambda: tf.constant(0.0,            name='zero_curriculum_increment')
            increment = tf.cond(increment_pred, full_increment_func, zero_increment_func)
        elif case('loss_change'):
            # predicate for increment type
            increment_pred = tf.not_equal(loss_history[0], DUMMY_LOSS, name='curriculum_predicate')

            # increment function for when loss history is still
            def full_increment_func():
                lin_seq = tf.expand_dims(tf.linspace(0., 1., config['change_num_iterations']), 1)
                ls_matrix = tf.concat([tf.ones_like(lin_seq), lin_seq], 1)
                ls_rhs = tf.expand_dims(loss_history, 1)
                ls_slope = tf.matrix_solve_ls(ls_matrix, ls_rhs)[1, 0]

                full_increment = tf.div(config['rate'], tf.pow(tf.abs(ls_slope) + 1, config['sharpness']), name='full_curriculum_increment')

                return full_increment

            # dummy increment function for when loss history is changing rapidly
            zero_increment_func = lambda: tf.constant(0.0, name='zero_curriculum_increment')

            # final conditional increment
            increment = tf.cond(increment_pred, full_increment_func, zero_increment_func)

    # create updating op. the semantics are such that training / gradient update is first performed before the curriculum is incremented.
    with tf.control_dependencies(dependency_ops):
        update_op = tf.assign_add(step, increment, name='update_curriculum_op')

    return update_op 
開發者ID:aqlaboratory,項目名稱:rgn,代碼行數:42,代碼來源:model.py

示例6: test_MatrixSolveLs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve_ls [as 別名]
def test_MatrixSolveLs(self):
        t = tf.matrix_solve_ls(*self.random((2, 3, 3, 3), (2, 3, 3, 1)))
        self.check(t) 
開發者ID:riga,項目名稱:tfdeploy,代碼行數:5,代碼來源:ops.py

示例7: _verifySolveBatch

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve_ls [as 別名]
def _verifySolveBatch(self, x, y):
    # Since numpy.linalg.lsqr does not support batch solves, as opposed
    # to numpy.linalg.solve, we just perform this test for a fixed batch size
    # of 2x3.
    for np_type in [np.float32, np.float64]:
      a = np.tile(x.astype(np_type), [2, 3, 1, 1])
      b = np.tile(y.astype(np_type), [2, 3, 1, 1])
      np_ans = np.empty([2, 3, a.shape[-1], b.shape[-1]])
      for dim1 in range(2):
        for dim2 in range(3):
          np_ans[dim1, dim2, :, :], _, _, _ = np.linalg.lstsq(
              a[dim1, dim2, :, :], b[dim1, dim2, :, :])
      for fast in [True, False]:
        with self.test_session():
          tf_ans = tf.matrix_solve_ls(a, b, fast=fast).eval()
        self.assertEqual(np_ans.shape, tf_ans.shape)
        # Check residual norm.
        tf_r = b - BatchMatMul(a, tf_ans)
        tf_r_norm = np.sum(tf_r * tf_r)
        np_r = b - BatchMatMul(a, np_ans)
        np_r_norm = np.sum(np_r * np_r)
        self.assertAllClose(np_r_norm, tf_r_norm)
        # Check solution.
        if fast or a.shape[-2] >= a.shape[-1]:
          # We skip this test for the underdetermined case when using the
          # slow path, because Eigen does not return a minimum norm solution.
          # TODO(rmlarsen): Enable this check for all paths if/when we fix
          # Eigen's solver.
          self.assertAllClose(np_ans, tf_ans, atol=1e-5, rtol=1e-5) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:31,代碼來源:matrix_solve_ls_op_test.py

示例8: testWrongDimensions

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve_ls [as 別名]
def testWrongDimensions(self):
    # The matrix and right-hand sides should have the same number of rows.
    with self.test_session():
      matrix = tf.constant([[1., 0.], [0., 1.]])
      rhs = tf.constant([[1., 0.]])
      with self.assertRaises(ValueError):
        tf.matrix_solve_ls(matrix, rhs) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:9,代碼來源:matrix_solve_ls_op_test.py

示例9: testEmpty

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve_ls [as 別名]
def testEmpty(self):
    full = np.array([[1., 2.], [3., 4.], [5., 6.]])
    empty0 = np.empty([3, 0])
    empty1 = np.empty([0, 2])
    for fast in [True, False]:
      with self.test_session():
        tf_ans = tf.matrix_solve_ls(empty0, empty0, fast=fast).eval()
        self.assertEqual(tf_ans.shape, (0, 0))
        tf_ans = tf.matrix_solve_ls(empty0, full, fast=fast).eval()
        self.assertEqual(tf_ans.shape, (0, 2))
        tf_ans = tf.matrix_solve_ls(full, empty0, fast=fast).eval()
        self.assertEqual(tf_ans.shape, (2, 0))
        tf_ans = tf.matrix_solve_ls(empty1, empty1, fast=fast).eval()
        self.assertEqual(tf_ans.shape, (2, 2)) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:16,代碼來源:matrix_solve_ls_op_test.py

示例10: genPerturbations

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve_ls [as 別名]
def genPerturbations(opt):
	with tf.name_scope("genPerturbations"):
		X = np.tile(opt.canon4pts[:,0],[opt.batchSize,1])
		Y = np.tile(opt.canon4pts[:,1],[opt.batchSize,1])
		dX = tf.random_normal([opt.batchSize,4])*opt.pertScale \
			+tf.random_normal([opt.batchSize,1])*opt.transScale
		dY = tf.random_normal([opt.batchSize,4])*opt.pertScale \
			+tf.random_normal([opt.batchSize,1])*opt.transScale
		O = np.zeros([opt.batchSize,4],dtype=np.float32)
		I = np.ones([opt.batchSize,4],dtype=np.float32)
		# fit warp parameters to generated displacements
		if opt.warpType=="homography":
			A = tf.concat([tf.stack([X,Y,I,O,O,O,-X*(X+dX),-Y*(X+dX)],axis=-1),
						   tf.stack([O,O,O,X,Y,I,-X*(Y+dY),-Y*(Y+dY)],axis=-1)],1)
			b = tf.expand_dims(tf.concat([X+dX,Y+dY],1),-1)
			pPert = tf.matrix_solve(A,b)[:,:,0]
			pPert -= tf.to_float([[1,0,0,0,1,0,0,0]])
		else:
			if opt.warpType=="translation":
				J = np.concatenate([np.stack([I,O],axis=-1),
									np.stack([O,I],axis=-1)],axis=1)
			if opt.warpType=="similarity":
				J = np.concatenate([np.stack([X,Y,I,O],axis=-1),
									np.stack([-Y,X,O,I],axis=-1)],axis=1)
			if opt.warpType=="affine":
				J = np.concatenate([np.stack([X,Y,I,O,O,O],axis=-1),
									np.stack([O,O,O,X,Y,I],axis=-1)],axis=1)
			dXY = tf.expand_dims(tf.concat([dX,dY],1),-1)
			pPert = tf.matrix_solve_ls(J,dXY)[:,:,0]
	return pPert

# make training batch 
開發者ID:chenhsuanlin,項目名稱:inverse-compositional-STN,代碼行數:34,代碼來源:data.py

示例11: random_transform

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve_ls [as 別名]
def random_transform(self,batch_size):
        if self._transform is None:
            corners = [[[-1.,-1.,-1.],[-1.,-1.,1.],[-1.,1.,-1.],[-1.,1.,1.],[1.,-1.,-1.],[1.,-1.,1.],[1.,1.,-1.],[1.,1.,1.]]]
            corners = tf.tile(corners,[batch_size,1,1])
            corners2 = corners * \
                                   (1-tf.random_uniform([batch_size,8,3],0,self.scale))
            corners_homog = tf.concat([corners,tf.ones([batch_size,8,1])],2)
            corners2_homog = tf.concat([corners2,tf.ones([batch_size,8,1])],2)
            _transform = tf.matrix_solve_ls(corners_homog,corners2_homog)
            self._transform = tf.transpose(_transform,[0,2,1])
        return self._transform 
開發者ID:soltanianzadeh,項目名稱:STNeuroNet,代碼行數:13,代碼來源:stneuronet.py

示例12: _solve_w_mean

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve_ls [as 別名]
def _solve_w_mean(self, new_z_mean, M):
    """Minimise the conditional KL-divergence between z wrt w."""
    w_matrix = tf.matmul(M, M, transpose_b=True)
    w_rhs = tf.einsum('bmc,sbc->bms', M, new_z_mean)
    w_mean = tf.matrix_solve_ls(
        matrix=w_matrix, rhs=w_rhs,
        l2_regularizer=self._obs_noise_stddev**2 / self._w_prior_stddev**2)
    w_mean = tf.einsum('bms->sbm', w_mean)
    return w_mean 
開發者ID:deepmind,項目名稱:dynamic-kanerva-machines,代碼行數:11,代碼來源:memory.py


注:本文中的tensorflow.matrix_solve_ls方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。