本文整理匯總了Python中tensorflow.matrix_solve方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.matrix_solve方法的具體用法?Python tensorflow.matrix_solve怎麽用?Python tensorflow.matrix_solve使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.matrix_solve方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _verifySolve
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve [as 別名]
def _verifySolve(self, x, y, batch_dims=None):
for adjoint in False, True:
for np_type in [np.float32, np.float64, np.complex64, np.complex128]:
if np_type is [np.float32, np.float64]:
a = x.real().astype(np_type)
b = y.real().astype(np_type)
else:
a = x.astype(np_type)
b = y.astype(np_type)
if adjoint:
a_np = np.conj(np.transpose(a))
else:
a_np = a
if batch_dims is not None:
a = np.tile(a, batch_dims + [1, 1])
a_np = np.tile(a_np, batch_dims + [1, 1])
b = np.tile(b, batch_dims + [1, 1])
np_ans = np.linalg.solve(a_np, b)
with self.test_session():
tf_ans = tf.matrix_solve(a, b, adjoint=adjoint)
out = tf_ans.eval()
self.assertEqual(tf_ans.get_shape(), out.shape)
self.assertEqual(np_ans.shape, out.shape)
self.assertAllClose(np_ans, out)
示例2: init_train_updates
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve [as 別名]
def init_train_updates(self):
penalty_const = asfloat(self.penalty_const)
n_parameters = self.network.n_parameters
variables = self.network.variables
parameters = [var for var in variables.values() if var.trainable]
param_vector = make_single_vector(parameters)
hessian_matrix, full_gradient = find_hessian_and_gradient(
self.variables.loss, parameters
)
parameter_update = tf.matrix_solve(
hessian_matrix + penalty_const * tf.eye(n_parameters),
tf.reshape(full_gradient, [-1, 1])
)
updated_parameters = param_vector - flatten(parameter_update)
updates = setup_parameter_updates(parameters, updated_parameters)
return updates
示例3: test_MatrixSolve
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve [as 別名]
def test_MatrixSolve(self):
t = tf.matrix_solve(*self.random((2, 3, 3, 3), (2, 3, 3, 1)), adjoint=False)
self.check(t)
t = tf.matrix_solve(*self.random((2, 3, 3, 3), (2, 3, 3, 1)), adjoint=True)
self.check(t)
示例4: testNonSquareMatrix
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve [as 別名]
def testNonSquareMatrix(self):
# When the solve of a non-square matrix is attempted we should return
# an error
with self.test_session():
with self.assertRaises(ValueError):
matrix = tf.constant([[1., 2., 3.], [3., 4., 5.]])
tf.matrix_solve(matrix, matrix)
示例5: testWrongDimensions
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve [as 別名]
def testWrongDimensions(self):
# The matrix and right-hand sides should have the same number of rows.
with self.test_session():
matrix = tf.constant([[1., 0.], [0., 1.]])
rhs = tf.constant([[1., 0.]])
with self.assertRaises(ValueError):
tf.matrix_solve(matrix, rhs)
示例6: testNotInvertible
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve [as 別名]
def testNotInvertible(self):
# The input should be invertible.
with self.test_session():
with self.assertRaisesOpError("Input matrix is not invertible."):
# All rows of the matrix below add to zero
matrix = tf.constant([[1., 0., -1.], [-1., 1., 0.], [0., -1., 1.]])
tf.matrix_solve(matrix, matrix).eval()
示例7: testBatchResultSize
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve [as 別名]
def testBatchResultSize(self):
# 3x3x3 matrices, 3x3x1 right-hand sides.
matrix = np.array([1., 2., 3., 4., 5., 6., 7., 8., 9.] * 3).reshape(3, 3, 3)
rhs = np.array([1., 2., 3.] * 3).reshape(3, 3, 1)
answer = tf.matrix_solve(matrix, rhs)
ls_answer = tf.matrix_solve_ls(matrix, rhs)
self.assertEqual(ls_answer.get_shape(), [3, 3, 1])
self.assertEqual(answer.get_shape(), [3, 3, 1])
示例8: _batch_solve
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve [as 別名]
def _batch_solve(self, rhs):
return tf.matrix_solve(self._pos_def_matrix, rhs)
示例9: testSolve
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve [as 別名]
def testSolve(self):
with self.test_session():
for batch_shape in [(), (2, 3,)]:
for k in [1, 4]:
operator, mat = self._build_operator_and_mat(batch_shape, k)
# Work with 5 simultaneous systems. 5 is arbitrary.
x = self._rng.randn(*(batch_shape + (k, 5)))
self._compare_results(
expected=tf.matrix_solve(mat, x).eval(), actual=operator.solve(x))
示例10: testSqrtSolve
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve [as 別名]
def testSqrtSolve(self):
# Square roots are not unique, but we should still have
# S^{-T} S^{-1} x = A^{-1} x.
# In our case, we should have S = S^T, so then S^{-1} S^{-1} x = A^{-1} x.
with self.test_session():
for batch_shape in [(), (2, 3,)]:
for k in [1, 4]:
operator, mat = self._build_operator_and_mat(batch_shape, k)
# Work with 5 simultaneous systems. 5 is arbitrary.
x = self._rng.randn(*(batch_shape + (k, 5)))
self._compare_results(
expected=tf.matrix_solve(mat, x).eval(),
actual=operator.sqrt_solve(operator.sqrt_solve(x)))
示例11: build_correction_term
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve [as 別名]
def build_correction_term(self):
# TODO
Mb = tf.shape(self.Z)[0]
Ma = self.M_old
# jitter = settings.numerics.jitter_level
jitter = 1e-4
Saa = self.Su_old
ma = self.mu_old
obj = 0
# a is old inducing points, b is new
mu, Sigma = self.build_predict(self.Z_old, full_cov=True)
Sigma = Sigma[:, :, 0]
Smm = Sigma + tf.matmul(mu, tf.transpose(mu))
Kaa = self.Kaa_old + np.eye(Ma) * jitter
LSa = tf.cholesky(Saa)
LKa = tf.cholesky(Kaa)
obj += tf.reduce_sum(tf.log(tf.diag_part(LKa)))
obj += - tf.reduce_sum(tf.log(tf.diag_part(LSa)))
Sainv_ma = tf.matrix_solve(Saa, ma)
obj += -0.5 * tf.reduce_sum(ma * Sainv_ma)
obj += tf.reduce_sum(mu * Sainv_ma)
Sainv_Smm = tf.matrix_solve(Saa, Smm)
Kainv_Smm = tf.matrix_solve(Kaa, Smm)
obj += -0.5 * tf.reduce_sum(tf.diag_part(Sainv_Smm) - tf.diag_part(Kainv_Smm))
return obj
示例12: matrix_solve
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve [as 別名]
def matrix_solve(self, matrix, rhs, adjoint=None):
return tf.matrix_solve(matrix, rhs, adjoint=adjoint)
# Theano interface
示例13: solve
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve [as 別名]
def solve(self, a, b):
return tf.matrix_solve(a, b)
示例14: genPerturbations
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve [as 別名]
def genPerturbations(opt):
with tf.name_scope("genPerturbations"):
X = np.tile(opt.canon4pts[:,0],[opt.batchSize,1])
Y = np.tile(opt.canon4pts[:,1],[opt.batchSize,1])
dX = tf.random_normal([opt.batchSize,4])*opt.pertScale \
+tf.random_normal([opt.batchSize,1])*opt.transScale
dY = tf.random_normal([opt.batchSize,4])*opt.pertScale \
+tf.random_normal([opt.batchSize,1])*opt.transScale
O = np.zeros([opt.batchSize,4],dtype=np.float32)
I = np.ones([opt.batchSize,4],dtype=np.float32)
# fit warp parameters to generated displacements
if opt.warpType=="homography":
A = tf.concat([tf.stack([X,Y,I,O,O,O,-X*(X+dX),-Y*(X+dX)],axis=-1),
tf.stack([O,O,O,X,Y,I,-X*(Y+dY),-Y*(Y+dY)],axis=-1)],1)
b = tf.expand_dims(tf.concat([X+dX,Y+dY],1),-1)
pPert = tf.matrix_solve(A,b)[:,:,0]
pPert -= tf.to_float([[1,0,0,0,1,0,0,0]])
else:
if opt.warpType=="translation":
J = np.concatenate([np.stack([I,O],axis=-1),
np.stack([O,I],axis=-1)],axis=1)
if opt.warpType=="similarity":
J = np.concatenate([np.stack([X,Y,I,O],axis=-1),
np.stack([-Y,X,O,I],axis=-1)],axis=1)
if opt.warpType=="affine":
J = np.concatenate([np.stack([X,Y,I,O,O,O],axis=-1),
np.stack([O,O,O,X,Y,I],axis=-1)],axis=1)
dXY = tf.expand_dims(tf.concat([dX,dY],1),-1)
pPert = tf.matrix_solve_ls(J,dXY)[:,:,0]
return pPert
# make training batch
示例15: init_train_updates
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_solve [as 別名]
def init_train_updates(self):
training_outputs = self.network.training_outputs
last_error = self.variables.last_error
error_func = self.variables.loss
mu = self.variables.mu
new_mu = tf.where(
tf.less(last_error, error_func),
mu * self.mu_update_factor,
mu / self.mu_update_factor,
)
err_for_each_sample = flatten((self.target - training_outputs) ** 2)
variables = self.network.variables
params = [var for var in variables.values() if var.trainable]
param_vector = make_single_vector(params)
J = compute_jacobian(err_for_each_sample, params)
J_T = tf.transpose(J)
n_params = J.shape[1]
parameter_update = tf.matrix_solve(
tf.matmul(J_T, J) + new_mu * tf.eye(n_params.value),
tf.matmul(J_T, tf.expand_dims(err_for_each_sample, 1))
)
updated_params = param_vector - flatten(parameter_update)
updates = [(mu, new_mu)]
parameter_updates = setup_parameter_updates(params, updated_params)
updates.extend(parameter_updates)
return updates