當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.matrix_set_diag方法代碼示例

本文整理匯總了Python中tensorflow.matrix_set_diag方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.matrix_set_diag方法的具體用法?Python tensorflow.matrix_set_diag怎麽用?Python tensorflow.matrix_set_diag使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.matrix_set_diag方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: fit

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_set_diag [as 別名]
def fit(self, x=None, y=None):
    # p(coeffs | x, y) = Normal(coeffs |
    #   mean = (1/noise_variance) (1/noise_variance x^T x + I)^{-1} x^T y,
    #   covariance = (1/noise_variance x^T x + I)^{-1})
    # TODO(trandustin): We newly fit the data at each call. Extend to do
    # Bayesian updating.
    kernel_matrix = tf.matmul(x, x, transpose_a=True) / self.noise_variance
    coeffs_precision = tf.matrix_set_diag(
        kernel_matrix, tf.matrix_diag_part(kernel_matrix) + 1.)
    coeffs_precision_tril = tf.linalg.cholesky(coeffs_precision)
    self.coeffs_precision_tril_op = tf.linalg.LinearOperatorLowerTriangular(
        coeffs_precision_tril)
    self.coeffs_mean = self.coeffs_precision_tril_op.solvevec(
        self.coeffs_precision_tril_op.solvevec(tf.einsum('nm,n->m', x, y)),
        adjoint=True) / self.noise_variance
    # TODO(trandustin): To be fully Keras-compatible, return History object.
    return 
開發者ID:yyht,項目名稱:BERT,代碼行數:19,代碼來源:gaussian_process.py

示例2: testSquareBatch

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_set_diag [as 別名]
def testSquareBatch(self):
    with self.test_session(use_gpu=self._use_gpu):
      v_batch = np.array([[-1.0, -2.0, -3.0],
                          [-4.0, -5.0, -6.0]])
      mat_batch = np.array(
          [[[1.0, 0.0, 3.0],
            [0.0, 2.0, 0.0],
            [1.0, 0.0, 3.0]],
           [[4.0, 0.0, 4.0],
            [0.0, 5.0, 0.0],
            [2.0, 0.0, 6.0]]])

      mat_set_diag_batch = np.array(
          [[[-1.0, 0.0, 3.0],
            [0.0, -2.0, 0.0],
            [1.0, 0.0, -3.0]],
           [[-4.0, 0.0, 4.0],
            [0.0, -5.0, 0.0],
            [2.0, 0.0, -6.0]]])
      output = tf.matrix_set_diag(mat_batch, v_batch)
      self.assertEqual((2, 3, 3), output.get_shape())
      self.assertAllEqual(mat_set_diag_batch, output.eval()) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:24,代碼來源:diag_op_test.py

示例3: testRectangularBatch

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_set_diag [as 別名]
def testRectangularBatch(self):
    with self.test_session(use_gpu=self._use_gpu):
      v_batch = np.array([[-1.0, -2.0],
                          [-4.0, -5.0]])
      mat_batch = np.array(
          [[[1.0, 0.0, 3.0],
            [0.0, 2.0, 0.0]],
           [[4.0, 0.0, 4.0],
            [0.0, 5.0, 0.0]]])

      mat_set_diag_batch = np.array(
          [[[-1.0, 0.0, 3.0],
            [0.0, -2.0, 0.0]],
           [[-4.0, 0.0, 4.0],
            [0.0, -5.0, 0.0]]])
      output = tf.matrix_set_diag(mat_batch, v_batch)
      self.assertEqual((2, 2, 3), output.get_shape())
      self.assertAllEqual(mat_set_diag_batch, output.eval()) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:20,代碼來源:diag_op_test.py

示例4: _pos_to_proximity

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_set_diag [as 別名]
def _pos_to_proximity(self, pos, reuse=True): #[batch_size, n_max, 3]

        with tf.variable_scope('pos_to_proximity', reuse=reuse):

            pos_1 = tf.expand_dims(pos, axis = 2)
            pos_2 = tf.expand_dims(pos, axis = 1)

            pos_sub = tf.subtract(pos_1, pos_2)
            proximity = tf.square(pos_sub)
            proximity = tf.reduce_sum(proximity, 3)
            proximity = tf.sqrt(proximity + 1e-5)

            proximity = tf.reshape(proximity, [self.batch_size, self.n_max, self.n_max])
            proximity = tf.multiply(proximity, self.mask)
            proximity = tf.multiply(proximity, tf.transpose(self.mask, perm = [0, 2, 1]))

            proximity = tf.matrix_set_diag(proximity, [[0] * self.n_max] * self.batch_size)

        return proximity 
開發者ID:nyu-dl,項目名稱:dl4chem-geometry,代碼行數:21,代碼來源:PredX_MPNN.py

示例5: _get_normed_sym_tf

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_set_diag [as 別名]
def _get_normed_sym_tf(X_, batch_size):
    """
    Compute the normalized and symmetrized probability matrix from
    relative probabilities X_, where X_ is a Tensorflow Tensor
    Parameters
    ----------
    X_ : 2-d Tensor (N, N)
        asymmetric probabilities. For instance, X_(i, j) = P(i|j)
    Returns
    -------
    P : 2-d Tensor (N, N)
        symmetric probabilities, making the assumption that P(i|j) = P(j|i)
        Diagonals are all 0s."""
    toset = tf.constant(0, shape=[batch_size], dtype=X_.dtype)
    X_ = tf.matrix_set_diag(X_, toset)
    norm_facs = tf.reduce_sum(X_, axis=0, keep_dims=True)
    X_ = X_ / norm_facs
    X_ = 0.5*(X_ + tf.transpose(X_))
    
    return X_ 
開發者ID:jsilter,項目名稱:parametric_tsne,代碼行數:22,代碼來源:core.py

示例6: _update_memory

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_set_diag [as 別名]
def _update_memory(self, old_memory, w_samples, new_z_mean, new_z_var):
    """Setting new_z_var=0 for sample based update."""
    old_mean, old_cov = old_memory
    wR = self.get_w_to_z_mean(w_samples, old_memory.M_mean)
    wU, wUw = self._read_cov(w_samples, old_memory)
    sigma_z = wUw + new_z_var + self._obs_noise_stddev**2  # [S, B]
    delta = new_z_mean - wR  # [S, B, C]
    c_z = wU / tf.expand_dims(sigma_z, -1)  # [S, B, M]
    posterior_mean = old_mean + tf.einsum('sbm,sbc->bmc', c_z, delta)
    posterior_cov = old_cov - tf.einsum('sbm,sbn->bmn', c_z, wU)
    # Clip diagonal elements for numerical stability
    posterior_cov = tf.matrix_set_diag(
        posterior_cov,
        tf.clip_by_value(tf.matrix_diag_part(posterior_cov), EPSILON, 1e10))
    new_memory = MemoryState(M_mean=posterior_mean, M_cov=posterior_cov)
    return new_memory 
開發者ID:deepmind,項目名稱:dynamic-kanerva-machines,代碼行數:18,代碼來源:memory.py

示例7: CombineArcAndRootPotentials

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_set_diag [as 別名]
def CombineArcAndRootPotentials(arcs, roots):
  """Combines arc and root potentials into a single set of potentials.

  Args:
    arcs: [B,N,N] tensor of batched arc potentials.
    roots: [B,N] matrix of batched root potentials.

  Returns:
    [B,N,N] tensor P of combined potentials where
      P_{b,s,t} = s == t ? roots[b,t] : arcs[b,s,t]
  """
  # All arguments must have statically-known rank.
  check.Eq(arcs.get_shape().ndims, 3, 'arcs must be rank 3')
  check.Eq(roots.get_shape().ndims, 2, 'roots must be a matrix')

  # All arguments must share the same type.
  dtype = arcs.dtype.base_dtype
  check.Same([dtype, roots.dtype.base_dtype], 'dtype mismatch')

  roots_shape = tf.shape(roots)
  arcs_shape = tf.shape(arcs)
  batch_size = roots_shape[0]
  num_tokens = roots_shape[1]
  with tf.control_dependencies([
      tf.assert_equal(batch_size, arcs_shape[0]),
      tf.assert_equal(num_tokens, arcs_shape[1]),
      tf.assert_equal(num_tokens, arcs_shape[2])]):
    return tf.matrix_set_diag(arcs, roots) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:30,代碼來源:digraph_ops.py

示例8: correlation_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_set_diag [as 別名]
def correlation_loss(self, opts, input_):
        """
        Independence test based on Pearson's correlation.
        Keep in mind that this captures only linear dependancies.
        However, for multivariate Gaussian independence is equivalent
        to zero correlation.
        """

        batch_size = self.get_batch_size(opts, input_)
        dim = int(input_.get_shape()[1])
        transposed = tf.transpose(input_, perm=[1, 0])
        mean = tf.reshape(tf.reduce_mean(transposed, axis=1), [-1, 1])
        centered_transposed = transposed - mean # Broadcasting mean
        cov = tf.matmul(centered_transposed, centered_transposed, transpose_b=True)
        cov = cov / (batch_size - 1)
        #cov = tf.Print(cov, [cov], "cov")
        sigmas = tf.sqrt(tf.diag_part(cov) + 1e-5)
        #sigmas = tf.Print(sigmas, [sigmas], "sigmas")
        sigmas = tf.reshape(sigmas, [1, -1])
        sigmas = tf.matmul(sigmas, sigmas, transpose_a=True)
        #sigmas = tf.Print(sigmas, [sigmas], "sigmas")
        # Pearson's correlation
        corr = cov / sigmas
        triangle = tf.matrix_set_diag(tf.matrix_band_part(corr, 0, -1), tf.zeros(dim))
        #triangle = tf.Print(triangle, [triangle], "triangle")
        loss = tf.reduce_sum(tf.square(triangle)) / ((dim * dim - dim) / 2.0)
        #loss = tf.Print(loss, [loss], "Correlation loss")
        return loss 
開發者ID:tolstikhin,項目名稱:adagan,代碼行數:30,代碼來源:pot.py

示例9: _link

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_set_diag [as 別名]
def _link(self, prev_link, prev_precedence_weights, write_weights):
    """Calculates the new link graphs.

    For each write head, the link is a directed graph (represented by a matrix
    with entries in range [0, 1]) whose vertices are the memory locations, and
    an edge indicates temporal ordering of writes.

    Args:
      prev_link: A tensor of shape `[batch_size, num_writes, memory_size,
          memory_size]` representing the previous link graphs for each write
          head.
      prev_precedence_weights: A tensor of shape `[batch_size, num_writes,
          memory_size]` which is the previous "aggregated" write weights for
          each write head.
      write_weights: A tensor of shape `[batch_size, num_writes, memory_size]`
          containing the new locations in memory written to.

    Returns:
      A tensor of shape `[batch_size, num_writes, memory_size, memory_size]`
      containing the new link graphs for each write head.
    """
    with tf.name_scope('link'):
      batch_size = tf.shape(prev_link)[0]
      write_weights_i = tf.expand_dims(write_weights, 3)
      write_weights_j = tf.expand_dims(write_weights, 2)
      prev_precedence_weights_j = tf.expand_dims(prev_precedence_weights, 2)
      prev_link_scale = 1 - write_weights_i - write_weights_j
      new_link = write_weights_i * prev_precedence_weights_j
      link = prev_link_scale * prev_link + new_link
      # Return the link with the diagonal set to zero, to remove self-looping
      # edges.
      return tf.matrix_set_diag(
          link,
          tf.zeros(
              [batch_size, self._num_writes, self._memory_size],
              dtype=link.dtype)) 
開發者ID:deepmind,項目名稱:dnc,代碼行數:38,代碼來源:addressing.py

示例10: build_variational

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_set_diag [as 別名]
def build_variational(hps, kernel, z_pos, x, n_particles):
    bn = zs.BayesianNet()
    z_mean = tf.get_variable(
        'z/mean', [hps.n_z], hps.dtype, tf.zeros_initializer())
    z_cov_raw = tf.get_variable(
        'z/cov_raw', initializer=tf.eye(hps.n_z, dtype=hps.dtype))
    z_cov_tril = tf.matrix_set_diag(
        tf.matrix_band_part(z_cov_raw, -1, 0),
        tf.nn.softplus(tf.matrix_diag_part(z_cov_raw)))
    fz = bn.multivariate_normal_cholesky(
        'fz', z_mean, z_cov_tril, n_samples=n_particles)
    bn.stochastic('fx', gp_conditional(z_pos, fz, x, False, kernel))
    return bn 
開發者ID:thu-ml,項目名稱:zhusuan,代碼行數:15,代碼來源:svgp.py

示例11: get_moments

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_set_diag [as 別名]
def get_moments(x):
  """Gets first and second moments of input."""
  if isinstance(x, ed.RandomVariable):
    mean = x.distribution.mean()
    variance = x.distribution.variance()
    try:
      covariance = x.distribution.covariance()
    except NotImplementedError:
      covariance = tf.zeros(x.shape.concatenate(x.shape[-1]), dtype=x.dtype)
      covariance = tf.matrix_set_diag(covariance, variance)
  else:
    mean = x
    variance = tf.zeros_like(x)
    covariance = tf.zeros(x.shape.concatenate(x.shape[-1]), dtype=x.dtype)
  return mean, variance, covariance 
開發者ID:yyht,項目名稱:BERT,代碼行數:17,代碼來源:bayes.py

示例12: quadratic_regression_pd

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_set_diag [as 別名]
def quadratic_regression_pd(SA, costs, diag_cost=False):
    assert not diag_cost
    global global_step
    dsa = SA.shape[-1]
    C = tf.get_variable('cost_mat{}'.format(global_step), shape=[dsa, dsa],
                        dtype=tf.float32,
                        initializer=tf.random_uniform_initializer(minval=-0.1, maxval=0.1))
    L = tf.matrix_band_part(C, -1, 0)
    L = tf.matrix_set_diag(L, tf.maximum(tf.matrix_diag_part(L), 0.0))
    LL = tf.matmul(L, tf.transpose(L))
    c = tf.get_variable('cost_vec{}'.format(global_step), shape=[dsa],
                        dtype=tf.float32, initializer=tf.zeros_initializer())
    b = tf.get_variable('cost_bias{}'.format(global_step), shape=[],
                        dtype=tf.float32, initializer=tf.zeros_initializer())
    s_ = tf.placeholder(tf.float32, [None, dsa])
    c_ = tf.placeholder(tf.float32, [None])
    pred_cost = 0.5 * tf.einsum('na,ab,nb->n', s_, LL, s_) + \
            tf.einsum('na,a->n', s_, c) + b
    mse = tf.reduce_mean(tf.square(pred_cost - c_))
    opt = tf.train.MomentumOptimizer(1e-3, 0.9).minimize(mse)
    N = SA.shape[0]
    SA = SA.reshape([-1, dsa])
    costs = costs.reshape([-1])
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for itr in tqdm.trange(1000, desc='Fitting cost'):
            _, m = sess.run([opt, mse], feed_dict={
                s_: SA,
                c_: costs,
            })
            if itr == 0 or itr == 999:
                print('mse itr {}: {}'.format(itr, m))
        cost_mat, cost_vec = sess.run((LL, c))

    global_step += 1
    return cost_mat, cost_vec 
開發者ID:sharadmv,項目名稱:parasol,代碼行數:38,代碼來源:fit.py

示例13: testSquare

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_set_diag [as 別名]
def testSquare(self):
    with self.test_session(use_gpu=self._use_gpu):
      v = np.array([1.0, 2.0, 3.0])
      mat = np.array([[0.0, 1.0, 0.0],
                      [1.0, 0.0, 1.0],
                      [1.0, 1.0, 1.0]])
      mat_set_diag = np.array([[1.0, 1.0, 0.0],
                               [1.0, 2.0, 1.0],
                               [1.0, 1.0, 3.0]])
      output = tf.matrix_set_diag(mat, v)
      self.assertEqual((3, 3), output.get_shape())
      self.assertAllEqual(mat_set_diag, output.eval()) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:14,代碼來源:diag_op_test.py

示例14: testRectangular

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_set_diag [as 別名]
def testRectangular(self):
    with self.test_session(use_gpu=self._use_gpu):
      v = np.array([3.0, 4.0])
      mat = np.array([[0.0, 1.0, 0.0], [1.0, 0.0, 1.0]])
      expected = np.array([[3.0, 1.0, 0.0], [1.0, 4.0, 1.0]])
      output = tf.matrix_set_diag(mat, v)
      self.assertEqual((2, 3), output.get_shape())
      self.assertAllEqual(expected, output.eval())

      v = np.array([3.0, 4.0])
      mat = np.array([[0.0, 1.0], [1.0, 0.0], [1.0, 1.0]])
      expected = np.array([[3.0, 1.0], [1.0, 4.0], [1.0, 1.0]])
      output = tf.matrix_set_diag(mat, v)
      self.assertEqual((3, 2), output.get_shape())
      self.assertAllEqual(expected, output.eval()) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:17,代碼來源:diag_op_test.py

示例15: testInvalidShape

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_set_diag [as 別名]
def testInvalidShape(self):
    with self.assertRaisesRegexp(ValueError, "must be at least rank 2"):
      tf.matrix_set_diag(0, [0])
    with self.assertRaisesRegexp(ValueError, "must be at least rank 1"):
      tf.matrix_set_diag([[0]], 0) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:7,代碼來源:diag_op_test.py


注:本文中的tensorflow.matrix_set_diag方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。